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ACTUATOR-PLACEMENT CONSIDERATIONS FOR
THE CONTROL OF LARGE SPACE STRUCTURES

1. INTRODUCTION

1.1 Overview

The control of distributed-parameter systems (that is, systems most appropriately modeled by par-
tial differential equations) is an area of research which requires extensions to the established control
theory which has been developed for application to lumped-parameter systems (the dynamics of which
are conventionally described by ordinary differential equations). The motivation for much recent work
in this area has been the problem of control of large space structures.

In the field of satellite design, the complexity of control systems has evolved rapidly. Most small
earth-pointing satellites require only relatively simple attitude-stabilization systems which rely on tech-
niques such as spin stabilization, dual-spin stabilization, and gravity-gradient stabilization. The active
attitude control of satellites requiring precise pointing and maneuvering is accomplished by more com-
plex attitude-control systems involving reaction wheels, control moment gyros (CMGs), magnetic tor-
quers, or gas thrusters. Both types of satellites are typically treated as rigid bodies, and the control sys-
tems are successfully developed using either classical or modern control techniques by designing the
systems based on the equations which describe the satellite's rigid-body dynamics.

Beyond the capabilities of this technology lies the problem of controlling spacecraft attitude in the
presence of structural flexibility. The capability and desire to place satellites of ever larger dimension in
space while minimizing on-orbit mass will lead to spacecraft structural designs which are pervasively
flexible. Control systems for such spacecraft must, at the very least, account for the perturbations in
attitude induced by structural vibration. If, in addition, the structural deformations affect the mission
performance (such as deformations in antennas or optical support structures), then the attitude control
will be necessarily coupled with the additional problem of shape control. It is this complex composite
control problem which is the motivation of the work presented herein.

There are several characteristics of the problem of controlling large flexible spacecraft which dis-
tinguish it from the standard attitude-control problem. The dynamics of the structural deformations
would be most appropriately described by partial differential equations involving independent variables
in both time and space. For complex systems, however, partial-differential-equation models are seldom
achievable; in addition, the bulk of modern and optimal control theory assumes a discrete-plant model.
For these reasons, the dynamics of flexible spacecraft are typically approximated by a system of coupled
ordinary differential equations in time, whose dependent variables are generalized spatial coordinates.
If modal coordinates are chosen, then the ordinary differential equations describe the orthogonal modes
of vibration of the system.

This approach to approximating the system dynamics by a finite number of modes implicitly ac-
knowledges that a portion of the dynamics, often associated with higher frequency modes of vibration,
has been truncated from the model. The problem of model truncation and the design of a control
based on a truncated model is the first characteristic which distinguishes this problem from the conven-
tional attitude-control problem.

Manuscript approved November 19, 1982.

1



ROBERT E. LINDBERG, JR.

Another property of flexible-structure control systems is that the actuator placement impacts the
control design. The control of a rigid structure is, in many cases, theoretically independent of the loca-
tion of the actuators which provide the control action. In contrast, when it is important to achieve
shape control, the actuator placement on the structure to effectively provide that control is a primary
design consideration.

In this work, the problem of actuator-placement optimization is treated in detail. Several alterna-
tive optimization criteria will be considered, each reflecting some measure of the controllability of the
system as a function of actuator locations. In addition, the impact of model truncation on the
actuator-placement problem is considered.

1.2 Background

The concept of controllability of a mathematical model of a physical system is one of the funda-
mental results of modern control theory and is an important tool in the design of control systems. As
originally introduced by Kalman,' the check for complete controllability via the well-known rank test on
the controllability matrix provides an answer to the binary question of whether or not a system is com-
pletely controllable.

In stability theory, it is often important to know not only whether a system is stable or unstable
but also how stable. It follows, then, that a quantitative rather than qualitative measure of controllabil-
ity also would be a useful design aid. The questions to be answered are "how controllable is the sys-
tem?," "which configuration is more controllable?," or ultimately "which among the class of all com-
pletely controllable systems is the most controllable?"

These questions were first addressed in an early study by Kalman, Ho, and Narendra, 2 who pro-
posed a weighted trace of the controllability Gramian as a controllability measure. Brown3 and Mon-
zingo4 addressed the question of relative observability of linear systems (and implied the treatment of
controllability via duality). They recognized that the relationship between the column vectors of the
observability matrix can identify the least observable direction in the state space. Johnson5 extended
the work of Kalman, Ho, and Narendra, considering in particular the trace and determinant of the
inverse controllability Gramian as scalar measures of controllability. Muller and Weber6 identified the
maximum eigenvalue, trace, and determinant of the inverse controllability Gramian as three special
cases of a more general form of scalar controllability measure dependent on an independent parameter.
Variation of that parameter leads to an infinite set of scalar measures of relative controllability, any of
which could be used, for instance, in optimizing actuator placement. Friedland 7 defined a controllability
index based on the conditioning number of the controllability matrix. This index was shown to be
independent of state normalization.

A common thread binds all of these developments, in that the proposed quantitative measures of
controllability are based on information inherent in either the controllability matrix or the controllability
Gramian. Each leads to a measure which may be associated with the minimum energy or average
energy required to control the particular system. Optimization based on such a measure therefore
implicitly assumes the use of a minimum energy control. An entirely new approach was presented
recently by Viswanathan, Longman, and Likins8 and Viswanathan, 9 who proposed a scalar measure
based on the set of recoverable states associated with a specified recovery time T. This degree of con-
trollability is developed by considering the time-optimal regulator problem. The results were extended
by Viswanathan and Longmanl° to handle systems with repeated roots and by Longman and Alfriend"
to treat the time-optimal tracking problem.

The balance of this section summarizes the development of the degree of controllability as defined
by Viswanathan, Longman, and Likins and methods for its approximation as presented in Refs. 8 and 9.
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Section 2 investigates several aspects of the degree of controllability by considering simple systems
for which the exact value of the degree of controllability is readily obtained. In this way, the behavior
of the proposed methods of approximation are critically examined.

The results of section 2 motivate the development of a new conservative (lower-bound) approxi-
mation to the degree of controllability. This new approximation method, based on discretization of the
continuous system, is presented in section 3.

The optimization of actuator locations for the control of transverse oscillation of a simple flexible
structure is detailed in section 4. The effects of model fidelity and system normalization are considered
for various forms of the degree of controllability, resulting in both predictable and unanticipated results.

The concern regarding the effects of model truncation, in conjunction with the simple, not neces-
sarily satisfactory, nature of the optimal actuator placement for control of free-free structures leads to
the development of a quantity termed the degree of control spillover. The definition of this new con-
cept and methods for its approximation are presented in section 5. A new composite criterion for
actuator-placement optimization is then proposed, which reflects the desirability of both effectively con-
trolling the system modes included in the model and limiting the excitation of known residual modes.

The various forms of the degree of controllability implicitly assume that the associated control
laws will be obtained by conventional optimal-control techniques (specifically time-optimal, energy-
optimal, or fuel-optimal control). Recently a new control-design technique has been developed and
shown to be particularly attractive computationally for systems described by a large number of ordinary
differential equations. The technique, known as Independent Modal Space Control, obtains optimal
control laws which are independent of actuator locations. The fundamental limitation of the approach is
that heretofore the technique has required one actuator for each mode included in the system dynam-
ics. In section 6, this design technique is critically examined, and a new formulation is presented which
eliminates the restriction on the number of actuators required. The problem of actuator-placement
optimization is then addressed, and simple open-loop and closed-loop criteria are formulated.

The principal contributions of this work to the field of large-space-structure control in general and
the problem of actuator-placement optimization in particular are summarized in the conclusion, section
7.

1.3 Degree of Controllability

The system under consideration is that of the linear time-invariant regulator problem with
bounded measurable controls. In terms of the normalized state vector x and the normalized control
vector u, the system may be expressed as

x(t) = Ax(t) + Bu(t), (1)

with

uiu(t)I ( 1, i=1, 2, m. (2)

The control objective of a regulator control is to drive the state to x = 0. A normalization of the state
vector accomplishes the task of specifying the relative importance of driving each state element xi(t),
i = 1, 2, ... , n, to zero.

For this system, the degree of controllability as developed by Viswanathan, Longman, and Likins8

is based upon the following definitions:

Definition 1. The recovery region for time T for the normalized system described by Eqs. (1) and (2) is
the set

3
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R = {x(0)I 3 u(t), t E [0,TI, Iui(t)I < 1 for i= 1,2, ... , m, 3 x(T) = 0).

Definition 2. The degree of controllability in time T of the x = 0 solution of the normalized system
described by Eqs. (1) and (2) is defined as

p = inf l lx(0) II V x(0) V R,

where | ... | represents the Euclidean norm.

The degree of controllability for time Tis thus a scalar measure of the size of the recovery region,
taken as the infimal distance from the origin to the set of initial states which cannot be returned to the
origin in time T Several remarks may be made regarding the implications of the above definitions:

* Time-optimal control of the system is implied, since the boundary of the recovery region is
the locus of all states which can be returned to the origin using minimum time control;

* The previously mentioned normalization of the state will have an important influence on the
degree of controllability, since the norm of the state vector depends on that normalization;

* When the system described by Eq. (1) is uncontrollable in the binary sense, the recovery
region for any time T will have dimension less than that of the state space; therefore the
degree of controllability will be zero.

The last remark is intuitively pleasing and was, in fact, established as a prerequisite for the develop-
ment of the definition of degree of controllability.8

Upon introduction of this definition of degree of controllability, Viswanathan, Longman, and
Likins8 subsequently addressed the problem of approximating the recovery region and obtained a gen-
eral form for an approximate degree of controllability. The procedure involves choosing a set of n
linearly independent directions in the state space and constructing a parallelepiped with sides parallel to
these directions such that there is some point on each side which is in the recovery region but such that
no point outside the parallelepiped lies inside the recovery region. The minimum among the perpendic-
ular distances to the sides of the parallelepiped is then taken as an approximation to the degree of con-
trollability.

Any linearly independent spanning set (for example, the state-space axes) will yield an approxi-
mating parallelepiped; however, the desired property that the approximate degree of controllability be
zero if and only if the system is uncontrollable cannot be assured for an arbitrary choice of directions.
This becomes evident when we consider a simple example.

In Fig. 1, the rectangle constructed with edges parallel to the state-space axes provides a fairly
tight approximation to recovery region 1. However, it yields a much poorer approximation to the
degree of controllability P2 of region 2. In fact, if P2 - 0 in such a way that region 2 degenerates to a
line forming a diagonal of the rectangle, then the rectangle would yield a nonzero approximate degree
of controllability - for a system which is, by definition, uncontrollable.

To preserve this fundamental characteristic of the degree of controllability, the preceding approach
is abandoned in favor of an alternate set of (in general, nonorthogonal) directions. The real eigenvec-
tors and generalized eigenvectors and the real and imaginary parts of the complex eigenvectors and gen-
eralized eigenvectors of the A matrix are chosen as the n linearly independent directions in the state
space. It has been shown' 0 that for these directions the desired property of the approximation can be
demonstrated under fairly general assumptions. The choice of a nonorthogonal set of directions leads
to a parallelepiped approximation to the recovery region as in Fig. 2.
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Fig. I - Approximation based on the directions Fig. 2 - Approximation based on a nonorthogonal set
of the state-space axes of directions

The results of Ref. 8 presented here have been extended in Ref. 10 to handle the special prob-
lems which arise in systems with repeated eigenvalues occurring in multiple Jordan blocks. In this case,
the essential property, that the approximation be zero if and only if the system is uncontrollable, is
maintained through a more sophisticated choice of directions in the state space.

2. APPLICATION OF THE DEGREE OF CONTROLLABILITY TO SIMPLE SYSTEMS

2.1 Introduction

In this section the degree of controllability, as defined in subsection 1.3, is applied to several sim-
ple systems for which the exact value of the degree of controllability is readily obtained.

The relation of the degree of controllability to system stability is first investigated. The degree of
controllability of three second-order systems-the harmonic oscillator, the damped harmonic oscillator,
and the double-integral plant-is then considered. This choice of examples comprises the types of
modes occurring in modal representations of typical large flexible space structures. They provide the
opportunity to examine several important questions regarding the accuracy of the approximation
methods, the possibility of eliminating the specification of the recovery time from the problem by
obtaining approximate linear relations, and the impact of normalization of the state on the degree of
controllability of the system.

Finally, the results of Ref. 10 motivate an examination of the approximate degree of controllabil-
ity for systems possessing roots which are nearly identical. Since the approximation technique must be
modified when multiple roots exist in independent Jordan blocks, the behavior of the approximation in
the limit approaching this situation is considered.

2.2 Relation to Stability

To develop the relationship between the degree of controllability and the stability of a system, we
consider the simplest of systems, represented by the scalar first-order differential equation

x(t) = ax(t) + u, (3)

with a bounded control given by

1u(t)1 < 1. (4)

5
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We wish to evaluate the degree of controllability for -- < a < -o (very stable to very unstable sys-
tems) and for various values of recovery time T. Since this is a one-dimensional system, the degree of
controllability is simply the maximum magnitude IxoI of a state which can be returned to the origin in
time T.

This is a time-optimal control problem for which the performance index to be minimized is

J=J 0 L(x,u,t) dt=J dt (5)

and the Hamiltonian to be maximized is

H=pf (xu,t)-L=pax+pu-1. (6)
Clearly, Eq. (6) is maximized by the control

u(t) = sgn[p(t)]. (7)

From Hamilton's equations

O_ H (8)
ax

we obtain

p(t) = Cie"'. (9)
Equations (7) and (9) yield

u(t) = u = sgn[CI], (10)

so that the control has a constant value of +1 or -1 for all t > 0. Solving Eq. (3) for x(t) with
u = +1, we obtain

x(t) = C2 eaf" T (11)a
From the definition of the degree of controllability, we seek x0 such that x(T) = 0. Applying this
boundary condition to solve for C2 , we may write the initial state in terms of the final time as

x0= +- (eaT-1). (12)a
Taking the magnitude of x0 as the degree of controllability p, we obtain

p(a,T)= - (exit-1) (13)
a

Equation (13) is presented graphically in Fig. 3, from which we can make the following general state-
ments:

* For a system with negative real roots (a < 0), the degree of controllability as a function of
recovery time Tis unbounded, and

* For a system with positive real roots (a > 0), the degree of controllability is asymptotically
limited such that a limiting value of p exists as T - co.

2.3 Simple Harmonic Oscillator

The system under consideration in this section is a simple harmonic oscillator governed by the
second-order differential equation

Y (t) + c2y (t) = Ku (t), (14)

6
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Fig. 3 - Relation between the degree of controllability p
and stability, as parameterized by a
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with the scalar control restricted by

I U W I < 1, t > O.

If we choose as state elements

xl = K Y t), X2 = K y (t),

the system is expressed in first-order form as

[Z; = -0 o1 fxj + Hl01

(15)

(16)

(17)

Equations (16) dictate a particular normalization of the state elements (xl,x 2 ). Questions regard-
ing arbitrary normalization of the state are deferred to the discussion of the damped harmonic oscillator
in the following section. The motivation for considering the undamped oscillator separately is that the
time-optimal-control solution is well known and leads to an expression for the exact degree of control-
lability in closed form.

The time-optimal control of the system is the familiar bang-bang control of the form

u(t) = -sgn[-1r 1 sin wt + ir2 cos cOt], (18)

where 7r, and 7r2 depend on initial conditions. This control law may be represented graphically be a
switching curve in the state space (shown in bold in Fig. 4). The optimal control is then given by

u = u(WxX, Wx2 ) = +1, for (coxI,xX 2 ) above the switching curve,

u = u (Wx1, COx2) = -1, for (cXI, cox2) below the switching curve.

(19a)

(19b)

Several resulting characteristics of this solution will aid in the development of the recovery
regions associated with the harmonic oscillator:

* The optimal trajectories in the state space lie along concentric circles centered at
(WXI,xWX2 ) = (+1,0) for u = +1 and (xX,wOx2 ) = (-1,0) for u = -1;

7
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- g uW A t -A\,><}\ Fig. 4 - Construction of recovery regions
< S J / for the simple harmonic oscillator

* The relationship between the time of travel along an optimal circular arc and the angle 0
defining the arc is given by 0 = cot and is independent of the radius of the arc;

* From the control law, Eq. (18), the sign of the control must switch once during the first 7r/&o
time units (provided the state has not reached the origin of the state space);

* The control must change sign every 7r/co time units thereafter, until the state is returned to
the origin.

Based on these characteristics of the optimal control, the following method of construction for the
boundary of the recovery region associated with time T has been developed. (This method is due to
Athans and Falb.12 )

In Fig. 4, a typical time-optimal trajectory ACO is shown. Denoting as TA the time to traverse
this trajectory, from the second of the preceding four characteristics we may write

c TA = t ANC + + CMO. (20)

To construct the locus of all points in the state space which correspond to the same minimum time to
the origin TA:

1. Construct a circle of radius 2 with center at A, and label the intersection of this circle with
the r+ circle as B. (It can be shown by congruent triangles that the angle from the positive
Wxl axis about N to B is ( TA.)

2. Construct next a circular arc of radius 2 with center at B connecting the points D and E on
r+ and r- respectively. This defines half of the recovery-region boundary associated with
TA, and the remaining arc may be constructed via symmetry.

Consider now another point F associated with an angle co TF > 7r. The optimal trajectory is then
FCO. The recovery region is constructed as follows:

1. Begin with a circular arc of radius 2 about F to locate G on r+.

2. The arc HFI of radius 2 is constructed about G.

3. The remainder of the boundary lying below the switching curve is constructed by first locat-
ing the point J as the intersection of F+ and an arc of radius 4 about I. (Note that-JNG= =0

4. An arc of radius 4 centered at J and connecting I and K completes the lower boundary. The
upper boundary may again be constructed via symmetry.

8
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The recovery regions for several values of recovery time Tare shown in Fig. 5. We note the fol-
lowing properties of the recovery-region boundaries.

* The recovery regions lying wholly within a circle of radius 2 about the origin are bounded by
two circular arcs of radius 2 intersecting on the switching curve. The boundary has a cusp at
each of these points.

* The recovery regions for T = ihr/, i = 1, 2, . are bounded by circles of radius 2i cen-
tered at the origin.

* The recovery regions for T > 7r~/c, T • i7r/w, i = 2, 3, . are bounded by four circular
arcs, and the boundary has no cusps. In general, for j7r/w < T < kir/o, the boundary is
formed by two arcs of radius 2j and two arcs of radius 2k.

* The centers of all circular arcs which form the above boundaries lie on the r+ or F- circles.
It follows then that for large T the recovery-region boundaries closely approximate circles.

This last result will have important implications when we compare exact and approximate values for the
degree of controllability.

COX2

Fig. 5 - Recovery regions for the simple \ Xx
harmonic oscillator

Expressions may now be developed for the minimum distance to the recovery-region boundary
associated with a recovery time T. The problem is addressed in two parts, first considering regions
wholly contained within the circle of radius 2 and then extending the result to larger regions.

Several constructions are made in Fig. 6. Using the lettering established in Fig. 4 (although with
point locations changed somewhat), we note that since the point E lies on the same boundary as A,
both points are associated with the same recovery time TA; therefore CZ OME is given by

COME = O TA. (21)

By symmetry F OND = C OME, and since B, N, and D are collinear (from Fig. 2, N and B are the
centers of two arcs which osculate at D), t ONB is

(22)r ONB = r- w TA.

9
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Fig. 6 - Determination of the exact degree of controllability
of the simple harmonic oscillator

If A is an arbitrary point on the boundary, the degree of controllability will be determined by minimiz-
ing wr. Since the length OB is fixed for a particular TA and the length AB is 2, the magnitude of &or is
minimized when B, 0, and A are collinear. The length OB is obtained from

|OB12 = (2 + 2 cos WTA), (23)

and then

o)rmin= 2 -2 + 2 cos oTA, ° < w TA < r. (24)

For ir < w T < 27r, we recall from Fig. 4 that the boundary arc lying nearest the origin is of radius 4.
The minimum distance is therefore given by

ca)rmin = 4- 2-2 cosw T. -,, < w T < 27r, (25)

and, in general, for n = 1, 2, .

cop(T) = wrmin = 2n- N2-2 cos cwT, (2n-3)ir < XoT( (2n-2)Ir, (26a)
= 2n-./2 +2 coso jT, (2n-2)ir < coT (2n-1)7r. (26b)

Equations (26) constitute an analytic expression for the exact degree of controllability p of the
simple harmonic oscillator as a function of recovery time T. Attention is now turned toward approxi-
mate expressions for the degree of controllability obtained via the methods of Viswanathan, Longman,
and Likins.8

A parallelogram which superscribes the recovery-region boundary is to be constructed in the state
space. The sides of the parallelogram are to be parallel to directions determined by the real and ima-
ginary parts of the eigenvectors of the system matrix. For the system matrix of Eq. (17), the eigenvec-
tors are

Pi =J, P2 [I 1 (27)

The parallelogram is therefore a rectangle with sides parallel to the state-space axes, such that each side
contains at least one point in common with the recovery region and that no point within the recovery
region lies outside the rectangle. The first approximation to the degree of controllability is then defined
as the minimum of the set of perpendicular distances to the sides of the rectangle.

For this simple system, this set becomes merely the maximum values of Wx, and Wx2 attained by
the points on the boundary associated with recovery time T. It is easily shown (either by the formal
procedure presented in Ref. 8 or by examination of Fig. 4) that the distances are given by

10
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d, = f Isin cotI dt, (28a)

&od2 =fo cosotl dt. (28b)

The approximate degree of controllability is then

omp * = min [o d, co d2]. (29)

Viswanathan also noted that as a second approximation to Eqs. (28), for T large relative to the
period of the oscillator, the integrands in Eqs. (28) may be replaced by 2 /tr, the average value over a
period. This yields an approximation which is linear in time:

cop ** ( T) = 2 T/r. (30)

A comparison of the exact expression, Eqs. (26), and the approximate expressions, Eqs. (29) and
(30), for the degree of controllability of the simple harmonic oscillator is presented in Fig. 7. Both p *
and p ** periodically yield exact values, and for all T greater than twice the period of the oscillator, the
exact and approximate values differ by less than 10%. Further insight into the behavior of the approxi-
mations is provided upon noting that the values of recovery time for which the approximations are
exact correspond to circular recovery regions. The improvement in the accuracy of the approximations
for increasing T is therefore a direct consequence of the tendency of the recovery regions to pure cir-
cles for large T.

4 -

Fig. 7 - Exact values (wp) and approximate values 2-
(up * and wp **) of the degree of controllability of the 2
simple harmonic oscillator

wT
it 2n1

2.4 Damped Harmonic Oscillator

The second-order differential equation describing a damped harmonic oscillator may be written

y(t) + 2a1(t) + (a2 + w2)y(t) = Ku(t) (31)

with the control bounded by

I U(t) I < I, t > O. (32)

Equation (31) can be written in matrix first-order form as

[x21= ['-@ -<u Lx21 + [llU, (33)

where

x) 1 = aXt) = -yt,4t - W~ + -.J t) (34)
K K K

11
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At this point, an arbitrary normalization of the state vector may be specified. If weights n1 and n2
are chosen for the corresponding elements of x, then Eq. (33) may be written

x= Ax + Bu, (35)

where

A l/n, 01 [-ao I 1 [ o I -a n2w/n13
A l ° l/n 2J I--a 0 n2- | - a on (36a)

B=0 l/nt 1 = I/2 (36b)

x= 0 l/n2 x21 I 2n2 31'~~~n11n,0 li x/i
'~=u 1n1 x' = IX

x21 1X2 .x2 /n2 .

The time-optimal control solution is obtained via minimization of the Hamiltonian

H= -ax,(t)pl(t) + 2 CX2(t)p(t) - l cOXI (p 2(t)

- ax2(t)p2(t) + 1 U(t)2(t) + 1. (37)

(A complete development of the time-optimal control of a damped harmonic oscillator is presented in
Ref. 12, pp. 590-595.) The control u(t) which minimizes Eq. (37) is

u(t) = -sgn[p2 (t)I, (38)
and the costate P2 is given by

P2() = eat -7r n2 sin cot + 72 COS wtJ (39)

where 7rn and 7r2 depend on initial conditions. Defining the initial state

( = XI (°), 2 = X2 (0) (40)

and solving Eq. (35) using the optimal control

u = a = +1 (41)
we obtain the optimal trajectories (after extensive algebra):

c)2 +a2 (t) =o 2 + a2lencos t +n 2
2 +a 2

2eat sin ct

-A i \ sin (cot + i) + A, (42a)

O2 + a2 co2 + a2 nI -a .2 + (x2
x2(t) =-I-(le sin ot + w 2eatcoscot

A i /2 -+aT e2 t cos (cWt + ,) + Aa (42b)
n2 @ nub

where i = tan- I-.
a

The paths described by Eqs. (42) are logarithmic spirals which tend to the points

| ~xi xl, a2j ,) I A Aa, -1. The equations are transcendental; therefore closed-form
0), l ni n2t° J

12
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expressions for the trajectories (with time eliminated) cannot be obtained. However, the boundary of
the recovery region associated with a specified recovery time T is easily computed numerically using
Eqs. (42). Recovery regions for a typical system (with a = o/4 and nl = n2 = 1) are plotted in Fig. 8
along with the switching curve for the system (in bold). The minimum distance p to the recovery
region as a function of recovery time Tmay also be obtained numerically.

CL)2 + a2 ~ o2co X2

/ \w~~~~~~T = 2Tn

Fig. 8 - Recovery regions for a damped harmonic oscillator
with a = /4

To obtain the approximate degree of controllability p I for this system, we again consider the
eigenvectors of the system matrix. The eigenvectors of A as specified in Eq. (36a) are

Pi= | 1} P2= |- |; ~~~~~~~(43)
fl1

hence, as with the undamped oscillator, the directions of interest are the state-space axes. Following
the procedure of Ref. 8, we find that the minimum distances to the sides of the superscribed rectangle
are

dl= - I f I ea' sin o t|dt, (44a)

d2 =- J0 lea' cos wtl dt. (44b)

At this point several observations may be made. First, in the case of zero damping (a = 0) and
unit normalization, Eqs. (44) become identical to Eqs. (28), as expected. In this case the trajectories
given by Eqs. (42) become circles centered at (Wox1 ,cx 2) = (A,&0), also as expected. We can therefore
treat arbitrary normalization of the simple harmonic oscillator as a special case of this problem.

The exact degree of controllability p of this system may be compared with the approximate value
p *, as defined by

02 + a2 P min[2 + d,2 dc2 + d2 J (45)
p* = mm dl- d .(5

13
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Figures 9 and 10 make this comparison for two cases, with values of damping a and normalization n,
and n2 as noted in the two figure titles.

In the case of unit normalization (n1 = n2 = 1), Viswanathan, Longman, and Likins again
propose a second approximation based on the average value of the integrands of Eqs. (44) over one
period. This approximation is given by

P ** = f TJ eat dt

The values of @ p ** are also presented, for comparison, in Fig. 9.

(46)

1:

2 + a2p I

12r

3 -

!

n ' ' '~~~~~~~

uV 0 .5n

9

CO
2

+ a,
2

co P 6

3

1h
COT

Fig. 9 - Exact values (p) and approximate values (p *and

p ") of the degree of controllability of a damped harmonic
oscillator with a = w/4 and nl = n2 = 1

pp

0 0.5n 1 U
COT

1.5T[ 2n

Fig. 10 - Exact values and approximate values of the
degree of controllability of a damped harmonic oscillator
with a = w/4 and nl = 2, n2 = 1

2.5 Double-Integral Plant

To evaluate the relation between exact and approximate values of the degree of controllability of a
double-integral plant, the following second-order representation of the system is considered:

W(t) = ru(t),

with a bounded control

I U(t) I < I, t > O.

Written in state-space form, Eq. (47) becomes

[xI = [o rl jxJ + 1,

where the state elements have been defined as

xl(t) = y(t), x2 (t) = i(t)/r.

(47)

(48)

(49)

(50)

The well-known time-optimal regulator control12 may be written

u(t) = -sgn [xl(t) + r2 x2(t) x2 (t)l (51)

Equivalently, the sign of the bang-bang control defined by Eq. (51) may be determined graphically from
a parabolic switching curve in the state space as shown in bold in Fig. 11. The control is positive for
states below the switching curve and negative for states above.

14
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Fig. 11 - Recovery regions for a
double-integral plant \ 1x /r

The optimal solution is characterized as follows:

* The optimal trajectories in the state space are parabolic and concave to the right for control
u = +1 and concave to the left for control u = -1;

* The control law, Eq. (51), is such that the control will change sign at most once, that being
when the trajectory intersects the switching curve;

* The optimal trajectory from that point will follow the switching curve to the origin.

To determine the recovery region associated with a specified recovery time T, we seek the envelope
defined by the locus of all states for which the optimal control yields a recovery time of T.

For each point (x1,x2) in the state space, there exists a minimum time t*(xl,x 2 ) required to
return the state of the system to the origin. That minimum time t* is the sum of the time required to
reach the switching curve and the time required to traverse the switching curve from the point of inter-
section to the origin.

We consider first those initial states lying on the switching curve. The optimal control is simply

u(t) = -sgn (x2). (52)
Integrating the second state equation in this case, we obtain

x 2 (t) = x20 + t. (53)

From Eq. (53), t* corresponding to a final state x2 = 0 is then

t* (xXox 2 0 ) = Ix2 01, for XtO =- X2- 0 IX20o1* (54)

For initial states not lying on the switching curve, the control law, Eq. (52), determines the sign of the
initial control:

r• (to) = +1, for xl0 < -2 X20 IX20, (55)

u(to) = -1, for x10 > -2i x20IX201. (56)

We consider first an initial state lying above the switching curve. Using Eq. (56), we integrate the
second state equation to obtain

15

1



ROBERT E. LINDBERG, JR.

X2= X20- t. (57)
With Eq. (57), integration of the first state equation yields

XI = X10 + Fx2 0 t - rt2. (58)

Denoting as ta the time required to reach the switching curve, we impose the constraint

XI Qa) = r 2 "(59)
2 X2 (ta)

Substituting Eq. (59) into Eq. (58) and solving for ta, we obtain

ta = X20 + X20 + 1X (60)

To determine the remaining time tb to reach the origin, we note from Eq. (54) that

tb = IX2 (ta)I = X2 (ta), (61)

since x2 (ta) is necessarily negative by the assumption above. Using Eqs. (57) and (60), we rewrite Eq.
(61) as

tb = 2 x. (62)
2 r x 0

Combining Eqs. (60) and (62), we obtain for the optimal recovery time for an arbitrary initial state
lying above the switching curve

t* = ta + tb = X2+ 2 X220 +yX. (63)

The procedure may be repeated to obtain an equivalent expression for initial states below the
switching curve. Summarizing these results

t*(x1 ,x2 ) = x2 + 2 x2 X 2 I2' (64a)

=-x2 + 2 - xl <- x2x21. (64b)2 r; 21

Equations (64) can now be manipulated to obtain expressions for the locus of all states associated with
a specified optimal time 7'

X= x22 _X 2T+ r XT2 xl >-r X2Ix21, (65a)
2 2 4 2

= x22 x 2T- T2, x- - x21X21. (65b)

Typical recovery-region boundaries are shown in Fig. 11.

The exact degree of controllability of the system is obtained by solving for the minimum distance
to the boundary defined by Eqs. (65). Since the envelope is symmetric about the origin, it will be
sufficient to consider

xl=-r4 x2 2X2T + 4 (66)

The radial distance r may be obtained from

2= x2 + X2
2

2 r2T 3 + (r2T2 + 1 2 _r 2T (67)
16 4 1 8 Jx 4 16~
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Differentiating Eq. (67), we see that the expression for the x2 component of rmin is a cubic in x2
(from Fig. 9, the extremum is a minimum):

r2 X3 + 3r2 T x2 + or4T + 21 2 r2P3=O(8-'2 _4 T 2 1F T 1 T 0. (68)
4 4 2+ 4+ 2 X4

Equation (68) may be solved analytically for X 2 ., and Eq. (66) may then be used to obtain x1min The

exact degree of controllability of the system is then given by

(69)P = I[Xln + X2;m*(69

The approximate degree of controllability for the system is to be determined from the super-
scribed parallelogram with sides parallel to the directions defined by the real and imaginary parts of the
eigenvectors of the system matrix. In this case, since Eq. (49) is in Jordan form, these directions are
along the state-space axes. It is easily shown that the distances to the edges of the parallelogram (rec-
tangle) enclosing the recovery region for time T are the magnitudes of the coordinates of the point on
the switching curve corresponding to time T. These distances are

d= xt r T2, (70a)
2

d2= 1X2 1 = T, (70b)

and the approximation to p is

p*= min T, r T2I (71)

The normalization, included earlier in the discussion of the damped harmonic oscillator, has been
intentionally omitted from this development. From Eq. (71), the impact of arbitrary normalization of
the state elements in this problem can be determined by investigating the behavior of p with respect to
variation in F.

The exact and approximate values for the degree of controllability as a function of recovery time
are presented in Fig. 12 for various values of r. In each case (and for all values of F), the curves
diverge, indicating that Eq. (71) yields a progressively poorer upper bound to the actual degree of con-
trollability of the system with increasing recovery time T.

Viswanathan, Longman, and Likins8 note that the approximation may always be improved by
choosing more directions in the state space. However, careful examination of this example will indicate
that unless the exact direction of rmin is chosen, the resulting approximation will still be divergent.

2.6 Nearly Repeated Roots

Another situation which often occurs in large systems and yet may be studied by simple example
is the problem of nearly repeated roots. When a multiple root occurs in more than one Jordan block, a
modification of the approximation technique is required to assure that the approximation behaves prop-
erly in the limit as the system approaches an uncontrollable configuration. Specifically, Ref. 10 details
an alternate choice of directions which should be used in this case for the evaluation of the approximate
degree of controllability. (When a multiple root involves only a single Jordan block, the standard set of
directions developed in Ref. 8 apply-such is the case with the double-integral-plant problem of the
preceding subsection.)

17
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4

r =0

2 -

T

r0.2/
r ~~~~~~/*
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p

2

C

0 ~~~~~~~5 T
Fig. 12 -Exact and approximate values of the degree of

controllability of a double-integral plant

This abrupt change in the approximation technique for this special situation prompts questions
regarding the behavior of the approximation in a system which is numerically "near" a multiple-root
situation. Such a situation can easily occur as a result of system models which are generated numeri-
cally, in that true multiple roots virtually never appear with exactly the same value due to numerical
errors involved in developing the model. In what follows, we will clarify what is meant by "near" and
will examine two simple two-dimensional problems to gain insight into how such situations should be
treated in more complex systems.

Two distinct cases must be considered separately to fully understand the near-multiple-root prob-
lem. In each case we will consider the behavior of the degree of controllability in the limit as the sys-
tem numerically approaches the situation of a repeated root of multiplicity two in two Jordan blocks. In
the first case, the limit is approached from a system with a repeated root associated with a single Jordan
block; specifically, the problem is

18
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lim A = lim 0 A] (72)
E-0 E-0L I J

For E • 0, the standard choice of directions in the state space outlined in subsection 2.1 applies. How-

ever, when E = 0, the modified directions of Ref. 10 must be used to retain the desired characteristic of
the approximation. The second way in which the same limit may be approached is when two distinct
roots approach the same numerical value. The simplest example of this situation is

[A 0l
lim A = lim loA +e1 (73)
E-0 c-0 0 i 

Here again, the standard approximation technique applies except when e = 0. These two problems are
fully developed below.

Case I

As always, the system is described by Eqs. (1) and (2), where now

A = II l, B= [1I.

Here B has been chosen to produce an uncontrollable system in the limit as E - 0. The left and right

eigenvectors of the system matrix A are the columns of the matrices

Q= _ 11 01] P = E 0] (75)

and the eigenvector directions (here, the state-space axes) remain distinct as e - 0. The approximate
degree of controllability for this system for time T is obtained by computing the distances to the rectan-
gle, with sides parallel to state-space axes, which superscribes the actual recovery region. Using the
procedure presented in Ref. 8, we find these distances to be

d =fT 1(1 - et) Ie t dt, (76a)

d2= fo e-Xt dt. (76b)

It is clear from Eqs. (76) that as e - 0, both of these distances remain nonzero; therefore, the
approximate degree of controllability, which is simply p* = min [dl,d 2], does not reflect the fact that
the system is uncontrollable in the limit. This result is displayed graphically in Fig. 13, which shows
the behavior of the recovery region as e - 0, for X = 1 and T = 1.

Viswanathan and Longmant o recognized that the directions defined by the columns of P (or more
generally, the real and imaginary components of the columns of P) do not provide a satisfactory
approximation when repeated roots occur in multiple Jordan blocks. The system described by Eq. (74)
with e = 0 illustrates the difficulty which arises. A more sophisticated choice of directions was subse-

quently developed which satisfactorily handles this difficulty as a special case of the general problem.
The procedure involves replacing a specific subset of the full set of directions with a new modified sub-

set. Here we wish to examine the behavior in the limit as e - 0 of the approximation obtained by
using the procedure developed for the limiting case itself.

Without reiterating the entire general procedure developed in Ref. 10, we summarize its applica-
tion to this problem by first noting that here the full set of (two) directions will be replaced by a
modified set. The modified set is obtained by first performing a singular value decomposition on the
matrix Q*TB, where Q* is a matrix containing a specific subset of the columns of Q. For our problem
Q* = Q, so we define
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Fig. 13 - Recovery regions as E - 0 for case I
of the problem of nearly repeated roots

QTB= U1 W. (77)

The original directions defined by the columns of the corresponding matrix Pa are replaced with the
column directions of P*U. For this case

P*U = PU= Ile ] (78)

We note that these directions are nonorthogonal, leading to an approximating parallelogram with sides
parallel to the directions defined by the columns of Eq. (78). The new distances, which now replace
those of Eqs. (76), are

de* = fbo T- 1(1 -,E2_ Et)le- At t (79a)

d*2 =fT 12 +4 - A (79b)
d + E4 i4 1, 

We find that the approximation is now properly behaved in the limit in that lim d*2 = 0. These results

may be confirmed by considering again Fig. 13. In the limit, the directions which define the parallelo-
gram are given by vectors [1 I]T and [0 1]T. Clearly, for E = 0, the recovery region has degenerated to
a line along the direction of [1 11T; thus the distance d* to the side parallel to [1 1 ]T is zero, as
expected.

Case II

The second case to be considered is defined by the matrices

A =lox+e B= 1j, (80)
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where the concern is over the behavior of the approximation when the roots are nearly equal (e small).
We note that for the limiting case e = 0, the system is uncontrollable. The left and right eigenvectors
are clearly the state-space axes (the system is in Jordan form), and by the standard approximation pro-
cedure for nonrepeated roots, the distances to the sides of approximating rectangle are

..
d, = JO eXt dt, (81a)

d2= fT e-(X+E)' dt. (81b)

As e - 0, we reach the same conclusion as for case I, that the approximate degree of controllability
based on Eqs. (81) does not indicate that the system is nearly uncontrollable (since neither d, nor d2
approach zero in the limit).

Following the philosophy developed in case I, we apply the modified approximation technique,
developed for the multiple-root situation, to this problem involving nearly multiple roots. Again we
find that the set of directions to be replaced is the full set of two original directions defined by the
columns of P, hence P* and Q* become

P* = P= [o 0 Q= Q = I[01] (82)

As in Eq. (77), a singular value decomposition of Q*TB is performed, and the new directions on which
the modified approximation is based are defined by the columns of

P*U = I [-ii (83)

Since these directions are orthogonal, the new approximation to the recovery region is a rectangle, and
the distances to the sides of the rectangle are given by the integrals

= 2 f0 (1 + e e- t dt, (84a)

d2= 2 (1 - e-)e t dt. (84b)

Here again, we find that the modified choice of direction leads to a satisfactorily behaved approxima-
tion, since as e - 0, d2 - 0, correctly indicating a nearly uncontrollable system.

As a result of considering these two special cases, we may make several recommendations involv-
ing the use of degree-of-controllability approximation techniques for systems numerically near a situa-
tion of repeated roots in multiple Jordan blocks. The primary conclusion is that it is desirable in such
situations to consider both the standard and modified approximation techniques and to take as the final
approximation the smaller resulting value (since each approximation is itself an upper bound on the
degree of controllability).

In the general case, the use of either approximation technique involves the inversion of an n x n
matrix; therefore the recommended procedure involves an extra matrix inversion. Viswanathan, Long-
man, and Likins8 showed that any upper-bound approximation may be improved without furthqr matrix
inversion by simply choosing additional directions in the state space. The evaluation of the nminimum
distance to a side perpendicular to such an additional direction is a simple task.

One might be inclined to consider evaluating such distances in the directions indicated by the
modified approximation technique, without performing any further matrix inversion. This approach
would have worked in case II, since the additional directions to be considered are orthogonal. The rea-
son that this approach will not work in case I (where the new directions are nonorthogonal), and there-
fore will not work in general, lies in the subtle difference in the way principal and additional directions
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are considered. The principal directions (obtained by either the original or modified technique) deter-
mine the directions parallel to which the sides of the parallelepiped are constructed. The approximating
recovery region may be made more accurate by generating additional sides perpendicular to new direc-
tions in the state space. However it is the use of sides parallel to a specific spanning set of directions
which assures the desired behavior of the approximate degree of controllability in the limit as the sys-
tem becomes uncontrollable.

2.7 Summary

The examination of several simple dynamical systems has provided useful insight into the concept
of the degree of controllability of a system. It has been shown that a system with, bounded controls and
unstable poles has an asymptotically limited degree of controllability-in that there is a limiting value of
the degree of controllability as the recovery time Tapproaches infinity. In constrast, the degree of con-
trollability of a system with stable poles may be increased without bound by increasing the recovery
time.

For systems with only undamped harmonic modes, a linear approximation to the degree of con-
trollability as a function of time is easily obtained. This approximation is useful, provided the recovery
time is larger than twice the period of the lowest-frequency mode of the system. For damped harmonic
modes, a linear approximation is not available; however, if there is only light damping (as in a flexible
space structure), the linear approximation to the undamped system might be useful. It can be
expected, however, that for large values of recovery time the linear approximation will increasingly
underestimate the degree of controllability of the system.

The divergence of the approximate degree of controllability associated with the double-integral
plant can lead to problems in computing the degree of controllability of dynamical systems in which
rigid-body modes are present. If the system is expressed in modal form, this problem could be circum-
vented by using the exact expression, Eq. (69), for the rigid-body modes of the system; however, if the
system cannot be expressed in modal form (for example, if the normalization has been specified rela-
tive to some nonmodal formulation of the model), the present approximation method could lead to a
significant overestimation of the degree of controllability of the system.

One reasonable solution to this divergence problem is to seek a conservative (lower-bound)
approximation to the degree of controllability of general linear time-invariant systems. The develop-
ment of such an approximation is the subject of the next section.

Finally, we consider the problems which arise in systems which are numerically near a system
with repeated roots occurring in multiple Jordan blocks. It is found that an approximate degree of con-
trollability based on a modified set of directions in the state space (originally developed to handle the
limiting case itself) provides a satisfactory approximation in a region about the limiting case as well.

3. APPROXIMATION OF THE DEGREE OF CONTROLLABILITY
VIA SYSTEM DISCRETIZATION

3.1 Introduction

I A new approximation to the degree of controllability is developed here, obtained via discretization
of the continuous system. A temporally discretized representation of a given system leads to a new
recovery region in the state space which is contained within the recovery region of the original continu-
ous system. The minimum distance to the boundary of this new recovery region provides a lower
bound to the degree of controllability of the continuous system. This new approach is motivated in part
by the divergence of the upper bound in the double-integral-plant problem of subsection 2.5.
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The next two subsections formally develop this new approximation and a method for its computa-
tion. This is followed by a discussion of examples which illustrate the relation between the new
approximation and the original approximation and investigate the behavior of the new approximation
with respect to discretization step size.

or,-

3.2 Discretization and the Discrete Recovery Region

The proposed approximation to the degree of controllability is obtained via discretization of the
continuous system described by Eq. (1). This discretized version of a given system with piecewise-
constant controls leads to a recovery region in the state space which is contained within the recovery
region of the original continuous system. The minimum distance to the boundary of this new recovery
region provides a lower bound to the degree of controllability of the continuous system.

The standard approach to discretizing the system described by Eqs. (1) and (2) is developed by
first writing the solution of Eq. (1) as

x(t) = eAXt(0) + eAtf o eATBu (&) dT. (85)

If the total recovery time T is divided into N equal intervals A T and the control is restricted to be con-
stant over each interval, then the state at the (k + 1)th step, in terms of the state at the kth step is

x (k + 1)AT] = eAATx(kAT) + eAATf e-ATBu(kA T) dT (86)

or

Xk+1 = eAATxk + fAT e ABuk dX, (87)

where

Xk+1 x [(k + 1)A T], (88)

uk u(kA T), (89)

X A T- r. (90)

Defining the time-invariant matrices

G (AT) =eAAT - (91)

H(A T) = (fo e-AAx dX B, (92)

we rewrite Eq. (87) as

Xk+1 = Gxk + HUk- (93)

An iterative substitution of Eq. (93) into itself yields an expression for the final state of the system in
terms of the initial state x and the discrete control sequence:

N-I
XN = GN5 + a GN IEHU1 . (94)

Restricting xN to XN = 0 in Eq. (94) will yield an expression for the set of all initial states x E Yi'
which can be returned to the origin in Ndiscrete steps:

UO

[GN-lHI GN-2 HI ... HI =- GNX. (95)

UN-I1
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This expression may be written more compactly as

= -G- Fu, (96)
where

F = [GN-IHI GN- 2 HI ... IH, (97)

G6fN = (Gl)-, (98)
UO

U = Ul ge gNxm (99)

UN-I

Imposing the control limitation, Eq. (2), on each element of Eq. (99), Eq. (96) may be viewed as
a mapping from the (N x m)-dimensional control space (where m is the dimension of the control uk at
each step) to an n-dimensional state space. Here each point in the control space ReNxm represents an
entire control time history, not just an instantaneous value of the control as in the mn-dimensional con-
trol space of the continuous system. The set of admissible controls dictated by Eq. (2) forms a hyper-
cube centered on the origin of the control space and bounded by orthogonal hyperplanes at unit dis-
tance from the origin. The state-space recovery region for the discretized system is the image of this
hypercube through the map -G-NF Generically, we must require that N x m > n to assure that the
recovery region is not dimensionally deficient. This relationship can be visualized (for N = 3, m = 1,
n = 2) in Fig. 14. The boundaries of the actual and approximate recovery regions need not contain
points in common, although this is the case in the examples subsequently considered.

Qn

NXM ACTUAL RECOVERY
REGION 

APPROaMATE
RECOVERY /

Fig. 14 -Mapping from control space to state space

Several general characteristics of the resulting recovery region may be identified as a result of the
convexity of the control hypercube and the linearity of the mapping:

* The recovery region of the discretized system is convex;

* It is bounded by hyperplanes;

* Each hyperplane segment which constitutes a boundary of the recovery region is the image of
an (n-1)-dimensional boundary segment of the control hypercube.
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However, not every (N-1)-dimensional boundary segment of the control hypercube maps to a boun-
dary segment of the recovery region. In Fig. 14, six edges of the cube form the recovery-region boun-
dary (solid lines), and six edges map to the interior of the recovery region (dashed lines).

3.3 A New Approximation

Based on the preceding development, the following approximation to the degree of controllability
is proposed:

Theorem 1. The minimum among the set of perpendicular distances to the hyperplanes of the discre-
tized system recovery region (denoted p *) is a conservative (lower-bound) approximation to the
degree of controllability of the continuous system.

The following two propositions establish the validity of the theorem.

Proposition 1. The approximate recovery region R*, that is, the recovery region of the discretized sys-
tem, satisfies

R* C R. (100)

Proof This result follows directly from the fact that the set of admissible controls for the discrete sys-
tem is a subset of the set of admissible controls for the continuous system. a

Proposition 1 establishes the discretized-system recovery region as a conservative approximation
to the continuous-system recovery region. The next proposition establishes the proposed approxima-
tion as a lower bound to the continuous-system degree of controllability.

Proposition 2. For N X m > n, p * of theorem 1 satisfies

p * < p, (101)

where p is defined by definition 2 in Subsection 1.3.

Proof To establish this result, we note first that the perpendicular distance from the origin to an arbi-
trary boundary hyperplane can be a distance to a point outside R. Such is the case in Fig. 14 for the
hyperplanes (lines) which intersect the vertical axis. We will show by contradiction that this cannot
occur in the case of the hyperplane that determines p *, which will be sufficient to prove the proposi-
tion.

We assume that the minimum among all perpendicular distances, dmin, is the distance to a
point outside the discrete-system recovery region. There must exist therefore another boundary
hyperplane, which we denote j, such that the distance d to that hyperplane along the direction asso-
ciated with dmin satisfies

d < dmin. (102)

Since the minimum distance dj to hyperplane j must satisfy

dj < d, l (103)

we have immediately

dj < dmin, (104)

which is a contradiction. U

We consider now the computation of the proposed approximation to the degree of controllability.
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Equation (96), the linear transformation from the discrete-system control space to the state space,
may be rewritten

x = Ku, (105)

where K =-G-NF and u is the entire control time history. We wish to determine the state-space
recovery-region boundary associated with the set of admissible controls

IuikI < 1, i= 1, 2, ... , m, k= 1, 2, ... , N. (106)

As was noted, the boundary of the recovery region, in general, will consist of hyperplane seg-
ments associated with (n-1)-dimensional boundary segments of the control hypercube given by Eq.
(106). However, not every boundary segment of the hypercube will map to a segment of the boundary
of the recovery region. In fact, for any given set of parallel (n-1)-dimensional boundary segments of
the control hypercube, only two will map to the boundary of the recovery region. (By virtue of Eq.
(106), this pair will be symmetric about the origin.)

These ideas can be clarified by considering once more the specific case of Fig. 14. Here we wish
to determine the one-dimensional boundary segments of the recovery region; therefore we choose to
map the one-dimensional edges of the cube through the linear transformation K = -G-NF. Under the
action of the linear map, parallel lines in the control space are mapped to parallel lines in the state
space. In this case, there are three distinct sets of edges, with each set consisting of four parallel line
segments. When each set is mapped into the state space, only two lines of each set will be extremal.
This result will hold in general, since we always wish to consider segments of dimension one less than
that of the state space. The problem of determining an approximate degree of controllability is solved
by first finding, for each set of parallel hyperplanes in the state space, the maximum perpendicular dis-
tance and then, among these maxima, choosing the minimum as the approximation.

The hyperplanes of a given set are generated by first partitioning the map in Eq. (105) as follows:

[Ull
x= WK, K2 1 | (107)

where ul E Unt, u2 E qg(NXm)-(n-I), and K, and K2 are the corresponding partitions of K.

Each (n-1)-dimensional boundary of the hypercube can be characterized by fixing the values of
N x m-(n - 1) of the elements of u and allowing the remaining n - 1 elements to vary between the
limits of +1 and -1. Writing Eq. (107) more simply as

x = Klul + K2U2, (108)

we note that for K, of maximal rank, there exists an n vector { • 0 such that

C TKI = 0. (109)

Multiplying Eq. (27) by (T, we have

-TX = CTK2U2 (110)

Recalling that the elements of u2 are specified (either ± 1), we recognize Eq. (110) as the equation of a
set of hyperplanes in the state space (parameterized by u2). The perpendicular distance to each hyper-
plane is given by

d = ( T ) 1/2 ' (111)

where the signs of the elements of u2 are different for each hyperplane. If we let

zT = TK2 (112)
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and assume

tst | = 1, (113)

then we recognize that the distance to the extremal member of the set of hyperplanes is

dmax =£Iz i I (114)

The computation of the approximate degree of controllability is reduced to determining e (typi-
cally via Gram-Schmidt orthonormalization) for each possible ordering of the columns in the partition
of the matrix K and computing dmax according to Eq. (114). The number of dmax to be computed is
equivalent to the number of ways of selecting n - I columns from the N x m columns of K. The
minimum among the set of all dmax is then the desired approximation.

3.4 Examples

Several considerations motivate the choice of the double-integral plant as our first example. A
typical model of a large flexible spacecraft, for which attitude and shape control is desired, will be
comprised of both flexible and rigid-body modes, when in modal form. The former take the form of
harmonic oscillators, and the latter take the form of double-integral plants. In section 2, we found that
while the upper bound developed by Viswanathan provides a tight approximation to the degree of con-
trollability of harmonic systems (and indeed is exact for particular periodic values of 7), in the case of
the double-integral plant, the approximation diverges from the exact value with increasing recovery
time T. This results in a significant overestimation of the degree of controllability. Additionally, this is
one of the few simple examples in which the exact degree of controllability can be computed in closed
form.

Recalling the work of subsection 2.5, we may write the continuous-system model as

[x21 = 0o 0i 1I + X u (115)1 10 I x2 I 10 .

In discrete form, the system is represented by Eq. (93) with

G=[ 0 A1 (116)

and

H = 1 ( T)2/21 (117)

where

AT= TIN. (118)

We require N > 2 here, since the state space is of dimension two and there is only one control
input. Following the new conservative approximation technique of the preceding subsection, we may
compute the approximate degree of controllability for various values of discretization number N and
recovery time T. Figure 15 presents the new approximation for N = 2, 4, 8 along with the exact value
and the upper-bound approximation as computed in subsection 2.5.

The accuracy of the approximation is evident from Fig. 16. For N = 8, the error is never more
than 3%. It is suggested that when N is to be increased to improve the accuracy of the approximation,
it should be doubled at each step to assure an improved approximation. This is the logical approach
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Fig. 15 - Lower-bound approximations (for N = 2, 4, 8), Fig. 16 - Errors for the conservative approximations
exact value, and upper-bound approximation of the degree
of controllability for a double-integral plant as a function of
recovery time T

when one considers that doubling N results in dividing each discrete control in half. The old set of
admissible discrete controls is therefore a subset of the new set of admissible controls, guaranteeing
that the approximation converges monotonically to the limit.

The second system considered is a simply supported beam. The model will include the first two
modes, with actuators placed at 1/3 and 2/3 the length of the beam.

The continuous system in normalized modal form is represented by the matrices

0 2.47 0 0 0 0

-2.47 0 0 0 0.866 0.866
A= 0 0 0 9 . 8 7 , B= 0 0 (119)

0 0 -9.87 0 0.216 -0.216

The value of the approximate degree of controllability for the various values of N and Tare illustrated
in Fig. 17. For N = 2, the approximation is valid over only a very short range of recovery time
(O < T < 0.25). Clearly, values of p for T > 0.5 are meaningless, since the degree of controllability
of a linear time-invariant system must increase with increasing recovery time. Curves for N = 4, 8, 16
are presented only over the range for which they are monotonically increasing.

It is not surprising that the approximation becomes zero for specific recovery times in the case
N = 2. A discrete harmonic system is by definition uncontrollable whenever the step size is a multiple
of the period of one of the modes. Since N is being held constant, the step size A T varies with
recovery time T. The periods of the two modes considered here are 2.55 and 0.637. Therefore, when
T = 1.274 (A T = 0.637), the discrete system is uncontrollable; hence the discrete approximation to the
degree of controllability is zero.

In light of these results, it is recommended that in determining the approximate degree of control-
lability over a range of recovery time T, the step size A T should be fixed at a value smaller than the
period of the fastest oscillator (rather than holding N constant). For a system for which periods are not
known, this could be accomplished by first choosing the smallest allowable value of N and increasing
the recovery time until the approximation is no longer increasing. Only a value of A T within the valid
range for that N will lead to satisfactory behavior of the approximation.
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Fig. 17 - Approximate values of the degree of controllability
for a simply supported beam
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3.5 Summary

0

A new conservative approximation technique has been developed for estimating the degree of
controllability of general linear time-invariant systems. The procedure involves discretization of the
continuous system and computation of the degree of controllability of the resulting discrete system.
Computation of this value is reduced to performing a Gram-Schmidt orthonormalization on the
columns of a linear mapping from the discrete control space to the state space.

The new approximation is shown to avoid the divergence problem associated with the original
approximation technique. Discussion of a simple example leads to a straightforward approach to select-
ing the appropriate step size for the discretization.

4. ACTUATOR PLACEMENT USING DEGREE-OF-CONTROLLABILITY CRITERIA

4.1 Introduction

The placement of actuators for the control of distributed-parameter systems remains an important
open question which has received much attention in the last several years. The approaches to resolving
the problem are nearly as numerous as the investigators who have addressed it.

Juang and Rodriguez13 propose to choose locations to minimize a quadratic performance func-
tional based on the steady-state solution of the optimal control and estimation problem. They treat, by
example, the placement of a single actuator. Aidarous, Gevers, and Installdt4 obtain optimal actuator-
placement solutions by optimizing locations after obtaining an optimal feedback-control-law structure
which functionally depends on the actuator locations. The technique is applied to parabolic distributed-
parameter systems. Martin15 considers the problem of optimizing actuators at each point in time and
arrives at a dynamic actuator-allocation strategy. Hughes and Skelton16 examine the controllability
(observability) of each mode of the structure as a function of the location of a single actuator (sensor)
and suggest that the technique may be employed to optimize multiple actuator (sensor) locations.
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Wang and Pilkey17 use a criterion reflecting the desire to maximize the damping ratio of a particu-
lar mode and imply an extension of the technique to a system of modes. The optimization is achieved
via classical root-locus techniques. Baruh and Meirovitch 18 find that by use of a design technique
known as Independent Modal Space Control (IMSC), the actuator locations have no influence on the
feedback control law. They suggest that actuator locations are therefore unimportant when IMSC is
used. This has raised some serious questions which will be addressed in detail in section 6.

Skelton and Chiu19 suggest treating the problem in a unique fashion by first specifying a discrete
finite set of possible actuator locations. Initially an actuator is assumed to be at each possible location,
the contribution of each to the total system performance is evaluated, and those contributing the least
are then eliminated. The optimality of such an approach has yet to be determined.

Kissel and Lin20 place paramount importance on eliminating all interaction between the control
system and a set of known residual modes which have been truncated from the control system model.
The design approach couples the actuator-placement and control-law design steps. It is found that a
large number of actuator commands must be constrained to achieve the desired isolation, and a small
number of actuators are subsequently available for realizing the desired control objective. Schulz and
Heimbold2 1 also integrate the design steps for actuator (and sensor) location and control-law generation
and optimize the design to maximize the dissipation energy due to the control action.

The contribution of the previous two sections to the concept of a degree of controllability (as
defined by Viswanathan, Longman, and Likins8 ) are also motivated by the problem of actuator place-
ment. Viswanathan's degree of controllability is clearly not the only such definition possible; indeed
several others have subsequently been developed, motivated by this early work. Laskin, Longman, and
Likins2 2 base a definition of the degree of controllability on a recovery region which reflects both the
time and fuel available to accomplish the control objective. In effect, an infinite set of degree-of-
controllability criteria result, parameterized by the ratio of fuel available to time available. In the limit
as the fuel available becomes infinite, the criterion approaches Viswanathan's definition, and in the
limit as time available becomes infinite, the definition yields a fuel-optimal degree of controllability.
Paralleling these results, Longman and Alfriend 23 define an energy-optimal degree of controllability
which may be associated with the control objective which minimizes control effort. This development
is along the lines of Moore2 4 and serves to formalize similar work by Arbel and Gupta2 5 and Arbel2 6

into a consistent framework with other forms of the degree of controllability. In a slight modification
of these ideas, Vander Velde and Carignan2 7 consider a weighted expression based on the volume of
the energy-optimal recovery region and include the possibility of actuator failure in the placement of
actuators.

In the next subsection, we will focus on the time-optimal, fuel-optimal, and energy-optimal
degree-of-controllability definitions of Refs. 8, 22, and 23 respectively. Upon establishing the
definitions of the fuel and energy criteria, we will summarize methods of approximation which are suit-
able for modal systems. In the subsequent subsection, we will apply these criteria to optimization of
actuator locations for control of transverse vibration of a simply supported beam. Although this partic-
ular dynamical system is certainly not representative of flexible spacecraft, there are several reasons for
considering it. The resulting actuator-placement solutions are easily interpreted, since the mode shapes
which describe transverse vibration of the simply supported beam are sine functions. Also, in contrast
with the free-free beam problem, the resulting optimal actuator-placement solutions are nontrivial.
(This will be discussed in more detail in section 5.) Finally, the difficulties encountered in finding the
global optimum for such a simple problem reflects the enormous complexity expected in treating a real-
istic spacecraft design.
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4.2 Alternative Definitions of the Degree of Controllability

The first of the three forms of the degree of controllability to be used here as an actuator-
placement criterion is that of Ref. 8, as established by definitions 1 and 2 in subsection 1.3. To distin-
guish this form from the others to be defined, we will here refer to p as the time-optimal degree of con-
trollability and use the notation ,p. This reflects the fact that the assumption of a time-optimal control
is implicit in definition 2. Similarly, the recovery region established by definition 1 is now denoted ,R.

By augmenting the system described by Eqs. (1) and (2) with a constraint on the quantity of fuel
available, the following definitions may be made2 2:

Definition 3. The recovery region for time T and fuel F for the normalized system described by Eqs. (1)
and (2) is the set

,R = {x(0)13 u(t), t E [0,TI, Iu,(t)I < 1, i=1, 2,..., m,

f 0 < uj(t) dt F, 3 x(T) = 0}.

Definition 4. The degree of controllability in time T and fuel F of the solution x = 0 of the normalized sys-
tem described by Eqs. (1) and (2) is

,fp = inf I x(0) V x(0) q fiR.

This definition of a degree of controllability is parameterized by the ratio of time available to fuel avail-
able, and it is interesting to consider the implications of the definition in the limits. As the fuel avail-
able becomes large, it reaches a point at which it ceases to have any influence on the control solution.
Specifically, if F > mT, the time available is the only constraint on the control solution, since mTis the
maximum fuel which can be consumed in time T by m bounded actuators satisfying Eq. (2). In this
case tfp-=p. In the contrasting limit, as Tapproaches infinity, the time constraint ceases to influence
the control solution, and definitions 3 and 4 lead to what is known as the fuel-optimal degree of con-
trollability. Following our new notation convention, we define fp = lim fp.

T-'o

The energy-optimal degree of controllability23 derives from the optimal-control policy which
minimizes the performance functional

J(u, T) = - (120)

Since Eq. (120) limits the control effort, the constraint imposed by Eq. (2) in the earlier definitions is
now lifted. (The assumption remains that the control is normalized such that equal magnitudes of the
ui are equally important.) With this, we make the following formal definitions:

Definition 5. The recovery region for time T and energy E for the normalized system described by Eq. (1)
is the set

eR = {x(0)13 u(t), t E [0,T], J(u,T) K E, 3 x(T) = 0).

Definition 6. The degree of controllability for time T and energy E of the solution x = 0 for the normalized
system described by Eq. (1) is defined as

eP = inf Ix(0) I I V x(O) i eR.

Upon defining tp, fp, and eP, Refs. 8, 22, and 23 respectively address the task of computing the
controllability measures. In the time-optimal and fuel-optimal cases, approximate methods are
required, since the exact value is not in general obtainable in closed form. For the energy-optimal
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criterion, it is easily shown that the exact value is a simple function of the minimum eigenvalue of the
controllability Gramian.

In the special case of systems that are described (as spacecraft often are) by undamped modal
equations of the form

Pi + cow IN i = FTu, i = 1, 2, n, (121)

there exist elegant approximate expressions for all three criteria under consideration. The linear
approximation to the time-optimal degree of controllability for an oscillatory system has already been
considered in subsection 2.3. Similar approximations are developed in detail in Refs. 22 and 23. In
consistent notation, these approximations are

tp= 2T mi NI ' (122)

eiP =[E/I mmi N ' (123)

fp = F min 'i. (124)

Here N, in each case is the weighting factor applied to mode i. These three simple approximations,
based on norms of the rows of the input influence matrix, will be used in the next subsection to optim-
ize actuators on a simply supported beam.

4.3 Optimal Actuator Placement for a Simply Supported Beam

To gain insight into the behavior of the various optimization criteria summarized in the previous
section, we consider here the optimal placement of m force actuators on a simply supported beam,
modeled by its n lowest frequency modes. The well-known expression (found in, for example, Ref. 28)
for the mode shapes and frequencies of transverse oscillation of a simply supported beam may be writ-
ten

Ai(x) = sin 'L ' (125)

xi = (i7r)2 VoIE7I/Mp. (126)

For our purposes it will suffice to assume the beam to be of unit length (L = 1) and the remaining
constants (E, I, and m) to be arbitrary. The important property of the frequency expression, Eq.
(126), will be found to be the ratio of frequencies, that is,

leo~j= (i/j)2 . (127)
For this simple problem, the input influence coefficient r ik of the kth actuator on the ith mode is

rik = (j(pk) = sin i7rpk. (128)

The simplest version of this optimization problem is to place one actuator based on a model which
includes only the fundamental mode of the system (m = 1, n = 1). The obvious optimal solution
using any of the three criteria, Eqs. (122), (123), and (124), is to place the actuator at p, = 0.5, that is,
at the middle of the beam, which is the point of maximum deflection of the first mode. Adding mode
2 to the system model produces the simplest problem for which the modal weights Ni influence the
optimal solution. Figure 18 illustrates the optimal actuator location as a function of N, with N 2 = 1
held constant.

For N, < 2.828, we find that the importance of mode 2 is sufficient to dictate that the actuator be
placed at p1 = 0.25, the point of greatest deflection of the second mode. (The first mode is controllable
from this location.) As we place prime importance on mode 1 by increasing N1, we see that the
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optimal actuator location asymptotically approaches Pi = 0.5. Since mode 2 has a node at 0.5, the
actuator cannot be placed exactly at that point unless N2 = 0. The dashed line at N, = 4 reflects what
may be considered a balanced weighting of the modes, that is N1 /N2 = W2sOwl. For these weights
pi = 0.333. In general, choosing weights ni = 1/1w reflects the expectation that, on the average, the
energy will be equally distributed among the modes.

At may be expected, the locus of optimal actuator locations displayed in Fig. 18 tells only half the
story. he symmetry of the physical system demands that a mirror image of this locus lie in the range
0.5 to 0.75. A simple gradient search procedure will converge to points on this equally optimal locus
when the initial actuator location for the search lies in the range 0.5 to 1.0.

It is not surprising that controlling the first two modes with two actuators leads to optimal actuator
locations which are symmetric about the center of the beam, each at a location which is optimal for a
single actuator (Fig. 19). Although not reflected in the figure, the nature of the solutions is such that
with, for instance, N. = 4, N 2 = 1 it is equally desirable to colocate actuators at 0.333 as to place them
at (0.333, 0.667). In such a situation, it is left to engineering judgment to determine which of these
optimal solutions is more acceptable in the light of other physical considerations. In the sequel, we
always present the solution which maintains one actuator on each side of the midpoint of the beam. In
every case, moving an optimally located actuator to its mirror location with respect to the midpoint will
not change the degree of controllability of the system.

100fe 100

ZF I 0

0.4 0.6 0.8 1 0 0.2 0.4 0.6
ACTUATOR LOCATION ACTUATOR LOCATION

Fig. 18 - Optimal placement' of one actuator when a two-
mode model is assumed, with N 2 = 1. These results apply
to the time-optimal, energy-optimal, or fuel-optimal cri-
terion.

Fig. 19 - Optimal placement of two actuators when two
modes are assumed, with N2 = 1. These results apply to
the time-optimal or energy-optimal criterion.
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The optimal actuator locations shown in Fig. 18 are independent of the particular form of the
degree-of-controllability criterion used. The results presented in Fig. 19 hold for both the time-optimal
and energy-optimal criteria. (We will discuss the results for the fuel-optimal criterion for this case
later.) In general, results using different criteria will be identical either in the case of placement of a
single actuator (since the rows rF of the input influence matrix each contain only one element, for
which all norms are equal) or whenever two criteria each produce optimal placement of a pair of actua-
tors which are symmetric about the midpoint (since the beam is then equally controllable from either
actuator, which implies that there is no better location for a single actuator, so that the case of single-
actuator placement holds implicitly).

The preceding discussion may lead one to ask: is there any problem for which the optimal place-
ment of a pair of actuators on a symmetric structure leads to a nonsymmetric solution? We need only
add one more mode to the model to encounter just such a situation.

The optimal placement of two actuators assuming a three-mode model of a simply supported
beam is considered in Figs. 20 through 23. Figures 20, 21, and 22 display the results using the time-
optimal degree of controllability. If N°, N2°, N3° are defined as the balanced weights which satisfy
NiINj = wej/w, the three figures reflect the variation of N., N2, and N3 respectively, while the remain-
ing weights are held constant. In each case, the solutions include ranges for which the actuator pair has
symmetric locations and ranges for which the locations may be described as complementary.

Focusing our attention on Fig. 20, we may examine these results in more detail. When mode 1 is
considered relatively unimportant (NI/NO < 0.6), the solution set (0.2,0.8) optimally provides a bal-
anced controllability between modes 2 and 3. As the importance of mode 1 increases, the optimal loca-
tions move toward the center of the beam, providing greater control authority over mode 1 at the
expense of the remaining two. Near the ratio NI/N° = 0.9, there is a discontinuity in the optimal solu-
tion, and a complementary pair of actuator locations (0.2,0.6) is found to be optimal. (By earlier argu-
ments, the sets (0.2,0.4), (0.4,0.8), and (0.6,0.8) are equally optimal in this case.)

This pair of locations is termed complementary, since although neither actuator is placed at the
optimal location for a single actuator, they complement each other in providing control authority over
the entire system. The actuator at 0.2 provides good balanced control of modes 2 and 3 at the expense
of mode 1, and the actuator at 0.6 provides better control authority of mode 1 than either mode 2 or 3.
(The optimal location of a single actuator for the same system is shown as a series of open circles over
the range for which complementary solutions are optimal.)

The dotted lines extending in either direction from the discontinuity reflect the existence of
suboptimal solution sets past the point of discontinuity. In fact the set (0.25,0.75) is a suboptimal
(locally optimal) solution for the balanced weighting condition denoted by the horizontal dashed line.
Such suboptimal solutions often exist at points of discontinuity. The dotted lines are omitted in Figs.
21, 22, and 23 for clarity.

As the importance of mode 1 is further increased, we see a return to a symmetric pair of locations
which again asymptotically approach the center of the beam. Similar results, involving both symmetric
and complementary sets of solutions, occur when N2 and N3 are varied with respect to their nominal
values (Figs. 21 and 22).

Figures 20, 21, and 22 apply only to the time-optimal criterion. As was noted, when two criteria
each indicate a symmetric pair of locations for this problem, the solutions are necessarily identical.
When complementary solutions are found to be optimal, however, the optimal solutions can, and do,
differ. A comparison of the optimal solutions for a variation of N, using the time-optimal and energy-
optimal criteria is shown in Fig. 23 over the range for which solutions are complementary.
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Fig. 20 - Optimal placement of two actuators
when three modes are assumed, with N2 and N3
held constant. (The open circles indicate the
equivalent optimal locations of a single actuator.)
These results apply to the time-optimal criterion.
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Fig. 22 - Optimal placement of two actuators
when three modes are assumed, with N. and N2
held constant. These results apply to the time-
optimal criterion.
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Fig. 21 - Optimal placement of two actuators
when three modes are assumed, with N. and N3

held constant. These results apply to the time-
optimal criterion.

0.4 0.6

ACTUATOR LOCATION

Fig. 23 - Optimal placement of two actuators
when three modes are assumed, with N2 and N3
held constant. The filled circles apply to the
time-optimal criterion, and the open circles apply
to the energy-optimal criterion.
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The use of the fuel-optimal degree of controllability for multiple-actuator problems yields strik-
ingly different results. Figure 24 summarizes the optimal placement of two actuators when a two-mode
model of the beam is assumed. This figure may be compared with Fig. 19, which reflects the results
using either the time-optimal or the energy-optimal criterion for the same problem. We find an
indeterminancy in the optimal solution for all but one value of N1 considered. When the first mode is
less important, one actuator is optimally placed at 0.25, while a continuum of equally favorable posi-
tions exists for the second actuator. If mode 1 is considered more important than mode 2, one actuator
is placed at 0.5, and again the second actuator may occupy any location within a specified range. This
indeterminancy manifests itself as a result of the nature of the norm in the optimization criterion, Eq.
(124). Since the criterion considers only the maximal element of each row ri, often one or more of
the actuators have no influence on the optimal solution. This property was first discussed by Laskin.2 9

One interesting consequence is that for this particular problem, the set (0.25,0.5) is optimal irrespective
of the modal weights. In Fig. 24 we have again limited each of the actuators to half of the beam simply
to facilitate the graphical display. Indeed for N 1/Np • 0.7, the second actuator is free to be placed
anywhere on the beam (including the endpoints), since it has no influence on the optimization criterion.

The results using the fuel-optimal criterion for the three-mode, two-actuator problem and varying
N, may be summarized as follows. For N1 /Np < 0.7, the first actuator is optimally placed at either
0.25 or 0.75, and the second actuator is optimally placed at 0.167, 0.5, or 0.833. For the range 0.8 <

N1 /Np ( 1.0, the first actuator still is placed either at 0.25 or 0.75, but the second actuator must be
placed at 0.5. For NI/NO > 1.0, the optimal locations are identical to those of Fig. 24. These results
may be compared with those of Figs. 20 and 23, which summarize the time-optimal and energy-optimal
solutions for the same problem.

We could spend an inordinate amount of time examining this simple example of actuator place-
ment. It will suffice, for the purpose of this work, to consider one further variation on the problem. In
Fig. 25, the optimal placement of two actuators is shown as a function of model fidelity, that is, the
number of modes considered. In each case the modal weights satisfy Nj/N. = co /JO. We find that
when three or more modes are included, a complementary (rather than symmetric) set of actuator loca-
tions appears to be optimal in all cases. This result is reasonable in hindsight but was not the
anticipated solution.

It is difficult to make many general statements about this last set of results except to point out
that due to the complexity of even this simple problem and behavior of the simple gradient search pro-
cedure used, the global optimality of these results is not assured for n > 4. (The difficulty of the prob-
lem is evidenced by the discrepancy between these results and those of Laskin,2 9 who considered the
same problem but employed a different search algorithm.)

5. DEGREE OF CONTROL SPILLOVER

5.1 Introduction

Near the end of subsection 4.1, we alluded to a single trivial result which arises when the various
degree-of-controllability criteria are applied to the actuator-placement problem for a free-free structure
(the simplest of which is the free-free beam). With the insight gained from considering the simply sup-
ported beam of section 4, we can now elucidate that statement.

The three optimization criteria, Eqs. (122), (123), and (124), tend to place force actuators at
points of maximum deflection of the modes whenever possible and otherwise to find points for which
the deflections of the various modes are balanced with respect to the assigned modal weights. For
free-free structures, the points of maximum deflection of all modes occur at the perimeter of the struc-
ture (the ends of a beam, the edges of a plate, etc.). The optimal location of any number of actuators
is always at the perimeter of the structure, irrespective of the number of modes in the model or the
modal weights assigned.
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Others have reported 8 " 6 27 encountering this problem and have found it to be unsatisfactory from
an engineering standpoint. The result can be circumvented by mandating that actuators not be co-
located and then limiting the possible actuator locations to a discrete set of points along the structure.
This does not, however, obviate the fact that the model is maximally controllable, in terms of the
degree of controllability, when all the actuators are placed at the ends of the structure.

The key to this last statement is the word model Although all engineering design is predicated on
the assumption that the mathematical model on which a design is based is a reasonable representation
of the physical system, it often becomes necessary in practice to accommodate the errors in that same
model. In our problem the errors are manifested primarily in the assumption that many modes of the
system exist which have not been included in the design of the control system.

Placing all actuators at the ends of a free-free structure is intuitively unsatisfactory in part because
we recognize that, as well as providing the greatest control authority over the modeled modes, the end-
points provide the greatest opportunity for exciting the unmodeled or residual modes of the system. To
account for the effect of the control on the residual modes of the system, it is necessary to quantify the
influence of the actuator locations on residual modes of the system and to augment the degree of con-
trollability to account for the existence of control spillover. (Control spillover is a descriptive term
coined by Balas3 0 which refers to the effect of a control on unmodeled system modes.)

5.2 A Definition for the Degree of Control Spillover

Consider a set of residual modes not included in the control-system model, described by the
linear vector-matrix differential equation
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x,(t) = Arx,(t) + Bu(t). (129)

Here, x, E 9P', and we assume the residual state vector has been normalized such that unit magnitudes
of the elements of x, (t) are held to be of equal importance. We restrict this development to the time-
optimal problem; hence there exists the additional normalization constraint described by Eq. (2) on the
control inputs. (The development extends in a natural way to the energy-optimal and fuel-optimal cri-
teria.) The following three definitions establish the concept of the (time-optimal) degree of control
spillover.

Definition 7. A state x,(T), in the subspace r?' of residual modes governed by Eq. (129), is said to be
reachable in time T from the state xt (0) = 0 if there exists a control u(t), t E [0,T], Iui(t)I < 1,
i = 1, 2, ... , m, such that

xr(T) = e ' fOT eA'B(t) dt. (130)

Definition 8. The set of reachable states for time T is the set S of all states xr(T) satisfying Eq. (130) for
controls satisfying I ui (t) I < 1.

Definition 9. The degree of control spillover for time T of the residual system, Eq. (12) is defined as
a = sup I IXr(T) II V x,(T) E S.

The set of reachable states therefore includes all disturbed states in the residual system subspace
attainable in time Twhen the specified bounded controls are used. The (time-optimal) degree of con-
trol spillover is a scalar measure of the magnitude of that set, chosen as the maximum distance to the
boundary of that set so as to complement the definition of the (time-optimal) degree of controllability.

Our attention may now be turned toward computing at least an approximation to %. Recognizing
the similarity between definitions 8 and 9 and definitions 1 and 2, we will wish to follow closely the
approximation techniques of Ref. 8. The first step is to construct an approximation to S. Assuming for
the present that A, has distinct eigenvalues, we establish the following representation of S.

Lemma 1. Let A, have distinct eigenvalues XI, X2, ... , XA, with associated right and left eigenvectors
being the column vectors P. = [Pi P2 ... pr] and Qr = [q, q2 ... qJ], where Q7T= P,7l. Then the
residual state x,(t) = a, which is reached from the origin when the control u(t) is implemented is
given by

6r = I 0 ek qkTBu (T - r) dT. (131)

Proof From Eq. (130), we may write

8r = x,(T) = XT eA (T-t) Bru(t) dt. (132)

The change of variables T = T - t leads to

Br =fo e 'Bru(T -r) dt. (133)

Recognizing that e ' = Pe ,r 1P, where A, = diag [XI ... Xr,, we obtain Eq. (131) after partition-
ing matrices. U

We define C to be the set of k for which Xk is real, and we define C* to be the set obtained by
taking one value of k associated with each pair of complex conjugate eigenvalues. Also, we decompose
the right and left complex eigenvectors into Pk = pkR + ipk, qk = q R + iql for k E C*. The following
theorem establishes a parallelepiped approximation to S, which is analogous to the approximate
recovery region of Ref. 8.
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Theorem 2. Let A, have distinct eigenvalues X1, X2, ... , A,. The set of reachable states S of the
residual-mode system, Eq. (129), can be approximated by the superscribed parallelepiped

r
8* = {e~e = z Cjpi v c, 3 Icil < 11, (134)

1=1

where the set of vectors vi, i = 1, 2, ... , r comprises the r vectors given by

| l If d{Pk, k E C, (135)

2( o TfRelfkI dlPLf, k E C*, (136)

2( f 0 ImlfkfI dL k E C*, (137)

where

fks = eAktqkTb (138)

and

Br = [blb2 ... be] (139)

In Eqs. (136) and (137) Re and Im denote real and imaginary parts respectively. Further, the
approximate set S* is such that at least one point on every face of the parallelepiped is contained in

S.

The proof of theorem 2 follows directly from the proof of theorem 1 of Ref. 8 and therefore will not be
detailed here.

Our next step is to compute, as an approximation to o,, the maximum distance to the boundary of

S*. This quantity is necessarily the distance to the extremal vertex of the parallelepiped, and we recog-
nize that its value is simply the magnitude of the vector sum of the absolute values of the components
of the vi. That is,

C*=~~~~~ o / . (140)

We notice immediately that, unlike the approximate degree of controllability (as developed in
Ref. 8), the computation of the approximate degree of control spillover does not require a matrix inver-
sion. In addition, since the set of reachable states S is contained within the approximation S*, the
approximate degree of control spillover a- * is an upper bound to C- and therefore may be regarded as
conservative (since our objective will be to keep a- small). It follows that the development of a lower
bound to o- (the analog of which was developed in section 3) is unnecessary. Further, we need not
concern ourselves with the behavior of the approximation as the set of reachable states becomes dimen-
sionally deficient, because our only concern now is that the approximation always be nonzero when
control spillover exists. This condition is satisfied implicitly, since or * is an upper bound.

Finally, we note that the preceding development has focused on the time-optimal control prob-
lem; therefore, definition 9 establishes a time-optimal degree of control spillover. By paralleling the
preceding work, we may also develop fuel-optimal and energy-optimal versions of the degree of control

spillover. The result is particularly attractive in the energy-optimal case, where the maximum distance
to the boundary of the set of reachable states may be computed directly from the maximum eigenvalue
of the Gramian of the residual system. In this case, no approximation would be required.
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5.3 A Composite Optimization Criterion for Actuator Placement

For use of this measure of control spillover in conjunction with the degree of controllability to
optimize actuator placement, the following composite optimization criterion is proposed:

min (p a o-aa"), (141)
pi

where a is an adjustable parameter assignable by the design engineer. Here p * may be any of the
approximations of p which have been cited thus far in this work.

In particular, it will be instructive to consider application of the composite criterion to the exam-
ple problem of section 4: Hence an examination of the form of the approximation a- * for an oscillatory
system is warranted. We consider a system of undamped harmonic residual modes described by

" (t) + =j2ij(t) - JTu(t), I = 1, 2, . .. , r, (142)

where the overbars distinguish the residual system from the controlled system described by Eq. (121).
The first-order representation of Eq. (142) may be obtained via the substitutions

X2iI = qjlNj, x2j = q/i ji., (143)

so that f 1 ° -1 [ 1 |(

V2J 1-co. 0 I 2 JJ F/TNjcoj

In Eqs. (143) we have followed the normalization of modes which was used to develop the form of the
approximate degree of controllability given in Eq. (122). The right and left eigenvectors of the system
described by Eq. (144) are the columns of P. = block diag[PjI and Qr = block diag[Qj], where

pi= [i 11 Q = 1/2[1 'I. (145)

The associated eigenvalues are X2i.I = iO, X2j = -io. Following theorem 2, the set C is empty, and
the set C* contains one entry for each mode j of the system, resulting in one vector vi each from Eqs.
(136) and (137) for each mode. Evaluating Eq. (138) and substituting into Eqs. (136) and (137), we
find that these vectors are

|jNjxJ| Co 1Sin XJjt1 dt0 (146)

z |AjSNjxj| oi Ic Zj t, dt [Al] (147)

For a final time T which is large compared with the period of the lowest frequency oscillator, these
integrals may be replaced by 2/nr, their average over a period. With this second approximation, we may
replace Eq. (140) with

2T f/TiT, (148)
where, as in Eq. (122), 1I...1, denotes the L, norm (the sum of the absolute values of the elements
of r). In the spirit of Eq. (141), the new composite criterion may be written

min (,P - a0). (149)
Pk

This criterion may be applied to the actuator-placement problem of the preceding section with
both predictable and interesting results. The simplest version of the problem may be stated: optimally
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place one actuator to control the first mode and suppress the interaction of the controller with the
second mode of the system. The reassuring result, which is independent both of the modal weights N,
and N1 and of the adjustable parameter a, is to locate the actuator at 0.5. For this location, not only is
the degree of controllability maximized, but the degree of control spillover is zero as well.

We could proceed through all the various problems of the previous section and examine the
impact of the new composite criterion on each. However, the following two particular cases serve well
to illustrate several important points. The first case is to add the fourth system mode as a residual
mode to the problem of three controlled modes and two actuators. Under the assumption of balanced
modal weights, we know that the optimal solution for a = 0 is the actuator location pair (0.2,0.6). As
a is increased, this remains the optimal solution through a = 0.08. In the range 0.08 < a < 0.09
there is a discontinuity in the optimal solution, and for a > 0.09 the optimal set is the pair (0.25,0.75).
For this problem, then, we find that the degree of control spillover has not influenced the optimal solu-
tion at all until it is weighted heavily enough to cause the actuators to be optimally located at the nodes
of the residual mode.

By changing the problem to include both the fourth and fifth modes as residual modes, we
intended to preclude the possibility of placing actuators such that the degree of control spillover would
be zero. Once more assuming balanced modal weights, we find that the optimal solution for a = 0 is
again (0.2,0.6). As a increases, this remains the optimal solution until a discontinuous jump occurs in
the range 0.9 < a < 1.0. For a > 1.0, the optimal locations for the actuator pair is (0.0,1.0)-a
design for which the system is uncontrollable! Closer examination of this result reveals that at the
discontinuity, a becomes large enough to preclude the possibility of any set of actuator locations which
would yield a positive value of the composite criterion, Eq. (149). A value of zero for the criterion was
therefore maximal, and the optimization dictated an uncontrollable design.

The obvious conclusion is that the design engineer must exercise some judgment in not placing
undue importance on suppressing interaction of the control system with the residual modes, lest the
optimal design become untenable.

6. ACTUATOR NUMBER AND PLACEMENT FOR INDEPENDENT
MODAL SPACE CONTROL

6.1 Introduction

A new control-design technique, known as Independent Modal Space Control (IMSC), briefly
mentioned in subsection 4.1, has recently been developed for generating control laws for large-
dimensional harmonic systems such as future large flexible spacecraft.18' 31

-
33 Here, a simple and suc-

cinct summary of this method for optimal control problems is first presented, together with a balanced
view of the pros and cons of the approach. The main advantage for linear-quadratic problems is that it
allows one to solve the Riccati equation as a set of two-by-two Riccati equations and thus allows one to
obtain solutions for very large systems. However, to implement the method, one must use one actua-
tor for each mode to be controlled, which totally nullifies the stated advantage. Here, a new formula-
tion of IMSC is developed which eliminates this restriction and allows one to use a reduced number of
actuators by synthesizing an approximation to the optimal feedback which is itself optimal with respect
to a modified cost functional.

Another characteristic which distinguishes this method from the standard linear-quadratic design
approach is that the control laws are generated without regard to the locations of the actuators. This
result has led to the claim that the actuator locations are "immaterial" when IMSC is used.3 Since a
premise of the present work is that actuator placement is of prime importance in the control of distri-
buted parameter systems, this claim warrants careful consideration. It is found here that the actuator
locations do influence the ultimate physical realization of the control laws as generated by IMSC and
therefore must be carefully chosen to assure a physically realizable control (for example, one which is
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within the physical limits of the control hardware). Methods for optimization of actuator placement are
developed for use in conjunction with IMSC, and the resulting task of actuator placement in some cases
can be decoupled from the task of control-law design (a feature unique to IMSC). Finally, the problem
of control spillover, addressed in detail in section 5, is here considered in the context of IMSC.

6.2 Summary and Discussion of IMSC

We present in this subsection a concise statement of the IMSC method distilled from Refs. 18,
31, 32, and 33 and compare the method to the more standard linear-quadratic approach. Optimal con-
trol of a distributed-parameter system via IMSC is accomplished by first approximating the partial-

differential-equation model by a finite set of ordinary differential equations, which for Refs. 18 and 33
take the form

MA'(t) + Kq(t) = F(t), M > 0, K > 0, (150)

where F(t) is a generalized force vector. References 31 and 32 apply IMSC to undamped gyroscopi-
cally coupled systems. The approach will be generalized here to handle damped nongyroscopic systems

including rigid-body modes.

A transformation matrix P satisfying PTMP = I and PTKP = - = diag(w2, ,c 2) produces
the modal-space representation

v',(t) + w,2vr(t) = fr(t), r = 1, 2, . n, (151)

V(t) = [V (t) . .. V.(t)]T= pTq(t), (152)

f (t) = [f, (t) ... f, (t)]'T = PTF(t). (153)

A corresponding state-space representation of the system is

x(t) = Ax(t) + W(t), (154)

X(t) = [Xl(t) ... X2,(t)]T, (155)

X2rI(t) = vr(t), X2r(t) = v',(t)/W, (156)
W(t) = [WT (t) ... WT(t)]T , (157)

W,(t) = [0 fr(t)/ro,]T (158)

O Xr
A = diag(A, A. A), Ar = 0-@ rI (159)

This representation can be put into a more standard form

x(t) = Ax(t) + Bu(t) (160)

by expressing the driving term in Eq. (154) in terms of the actual control inputs u (t) rather than the
generalized forces W(t). B takes the form

B = [BIT ... BnT]T, (161)

0 ... 0
Br = P I(pr)/ r . . * k, r(Pm)/Irj, (162)

where Or (P) is the rth mode-shape function evaluated at position pi when the associated actuator is a

force actuator and is the spatial derivative of that mode-shape function when the associated actuator is a
torque actuator.

The usual linear-quadratic result uses Eq. (160) and the cost functional

J f(xtQx+ uTRu) dt, Q > 0, R > 0, (163)

42



CZ
NRL REPORT 8675

to obtain

u(t) =-R-iBTK(t)x(t), (164)
K(t) = -KA - ATK + KBR-lBTK - Q. (165)

It is apparent from Eq. (165) that the actuator-location information, inherent in B, influences the
optimal control law described by Eq. (164).

In contrast, IMSC uses Eq. (154) and an alternative cost functional

JIM5C = of (XTQIMSCX + WTRIMsc W) dt, (166)

QIMsc = diag[Ql, * , Qj, (167a)
RIMsc = diag[R,, *--, R,], (167b)

with Q, and Rr two-by-two matrices associated with each mode. By defining w,= [X2,rl XT, we can
decompose the problem into a set of n second-order decoupled optimal control problems as follows:

n 
JIMSC = J.= S (WTQW, + WTRW) dt (168)

r=1

W,(t) =-R7-K,(t)w,(t), (169)

Kr(t) = -KrAr -ATKr + KrR -'Kr - Qr. (170)

Here, the generalized controls W,(t) have been determined independently and in the modal space,
which explains the name Independent Modal Space Control. It remains to determine actuator com-
mands u1 that can realize these generalized forces. We will address this later.

Since the feedback solution, Eq. (169), must yield a generalized force vector of the form specified
in Eq. (158), a further restriction on RlMsc is imposed. Expanding the second term in the integral of
Eq. (168) gives WrTRr W, = (fr(t)/,r) 2 [Rr]2 2, from which we can see that only the element [Rr]22
influences the cost functional. The form of Wr(t) in Eq. (158) can be obtained by requiring the first
row of Rr-1 of Eq. (169) to be zero, and by symmetry the remaining off-diagonal element is zero. If
this is written R7- = diag(O, l/pd), then the required form for the original weighting matrix is

Rr = diag(oo, p,). (171)

(The alternative of requiring the first row of Rr-'K, to be zero can allow more freedom in R. at the
expense of freedom in Q,.)

The preceding summary establishes the foundation for a comparison of the IMSC and standard
linear quadratic approaches, and this is given in the following five remarks.

Remark 1. The IMSC approach has a significantly smaller computational requirement, since it requires
the solution of n decoupled two-by-two Riccati equations, Eq. (170), rather than a single 2n x 2n
Riccati equation, Eq. (165). In fact, an analytical solution of the two-by-two Riccati equation is
given in Ref. 32 for the special case of an infinite-time problem, Qr the identity matrix, and A, as in
Eq. (159).

We can generalize this result to handle arbitrary Qr and A, matrices, so that modal damping and
rigid-body modes can be included in the system equations, Eq. (150). Without loss of generality, we
can choose the state vector to produce the companion form for A,, since a coordinate transformation is
easily accounted for in the choice of Qr. No transformation of R. is required, since it weights a scalar
generalized control function fr(t). Then the elements of K, are given in terms of roots of the two qua-
dratic equations in the following sequence of equations:

Ar |-a21 -a2 2
1 (172)
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k 2 + 2a2 iprk,2 - qp, Pr = 0, (173)

k2 + 2a2 2 prk 22 - q2 2 p, - 2Prk12 = 0, (174)

kl= kl2 k2 JP, + a2lk 2 2 + a2 2 k,2 - q12. (175)

Here q11, q12, and q22 are the elements of Q., and the sign ambiguities in taking the roots of Eqs.
(173) and (174) are resolved by the conditions for positive definiteness of Kr, that is, k,1 > 0,
k22 > 0, and k 11k 22 -k 2 > 0.

This generalization of the analytic Riccati solution for A, in companion form, rather than the
skew-symmetric Eq. (159), requires modification of the form of the remaining equations of the original
development. Specifically, the choice of state coordinates in Eq. (156) will be simply v, and ',, and
similarly the partition of W,(t) in Eq. (158) becomes [0f(t)]T. For flexible modes of the system, the
nonzero elements of Br are simply O,(pj); for rigid-body rotational modes, the nonzero elements of Br
are constants for torque actuators and linear functions of position for force actuators. With these
changes, the generalization carries through to all our subsequent results. We return to the restricted
form expressed by Eqs. (156) through (162) for the remainder of our results, however, to facilitate
further discussion and comparison with the original development.

Remark 2. The physical significance of the weighting matrices R in Eq. (163) and RIMsc in Eqs. (166)
are different. If R is diagonal, it weights the relative importance of equal-magnitude inputs u,(t).
By contrast, weights Pr of Eq. (171) give the relative importance of equal magnitudes of the general-
ized forces fr(t)/c0r and have no direct influence on the magnitude of the individual control inputs
u,(t). In fact, the identical control solution can be obtained by absorbing the Pr into the
corresponding Qr in each Jr of Eq. (168) and replacing element [R] 22 with unity for all r. With this
change it is then clear that the only effect of Pr was to weight the relative importance of controlling
the rth mode, but this is the designer's objective in specifying Qr.

Remark 3. Examination of the decoupled Riccati equations, Eq. (170), and their associated feedback
control laws, Eq. (169), shows that the actuator-location information, inherent in B alone, has no
influence on the IMSC optimal-control solution. The actuator locations can therefore be chosen
based on any desired criterion, and this becomes an independent design step. This decoupling of
the actuator-placement problem and the optimal-control problem is attractive computationally but is
not made without some loss of "optimality."

Remark 4. Since the optimal control solution for IMSC is found in the modal space, there exists an
extra step of synthesizing this solution in terms of actual control inputs u. From Eqs. (154) and
(160), W(t) = Bu(t), but this expression cannot be inverted directly to obtain u(t). The structure
of Wand B of Eqs. (157), (158), (161), and (162) leads to an equivalent relation:

n l(PI) ... 0I (Pm)

f(t) = B'u(t) ... ... ... u(t). (176)

¢ (Pl) ... 'n (Pm)

The solution of Eq. (176) for u(t) in terms of f(t) requires inversion of matrix B'. This leads to

the fundamental limitation of IMSC: the requirement that the number of actuators equal the
number of modes in the model (m = n), a necessary condition for the existence of (B')-'.

Remark 5. The fundamental property of IMSC is that generalized control functions f(t) are designed
for the system represented by Eq. (151). The method therefore is not limited to the linear-quadratic
optimal-control implementation. In Ref. 33, a pole-placement design technique is developed in
terms of IMSC, resulting in an attractive analytic control design.
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In the next subsection, a technique is developed by which IMSC may be enhanced to alleviate the
stringent requirement on the number of actuators, through the use of a modified cost functional.
Then, for the first time, a clear concise explanation of the importance of actuator placement in IMSC is
presented. This leads to the development of both open-loop and closed-loop approaches to actuator-
location optimization. With the decoupling noted in remark 3, these algorithms can form an indepen-
dent step in the design of the control system.

6.3 Reduction in the Number of Actuators

The principal disadvantage of IMSC is the requirement that the number of actuators equal the
number of modes in the control-system model. This requirement completely nullifies, for practical pur-
poses, the advantage that extremely-large-order Riccati equations can be handled by this design tech-
nique. In the design process there would also most likely be a management distaste for letting a com-
putational tool dictate the hardware design (the number of actuators), especially since the hardware
configuration is usually frozen in the design evolution long before the system software. Thus, this sub-
section is devoted to eliminating this stringent restriction on the number of actuators.

Adopting the point of view suggested in remark 2 that each p, should be set to unity, we can
write the cost functional in terms of Was

JIMSC = of (XTQ X + WTR W).dt, (177)

Q'= diag(Qj/pl, ........ ,Qtnt(178a)
R'= diag(co, 1, .. , X, 1), (178b)

and the associated physical control u (t) is to satisfy

W(t) = Bu (t). (179)

When the number of actuators is less than the number of modes (m < n), there will generically be no
u (t) which can produce the optimal W(t).

Consider the least-square approximate solution to Eq. (179) given by

U (t) = BtW(t), (180)

Bt= (BTB)-'BT~ (181)

(Reference 33 dismisses this use of a pseudo-inverse, since it generically will not yield an exact realiza-
tion of the generalized control W(t).) Recalling Eq. (169), we may write the feedback control which
results from this approximate realization of W(t) as

(t) = -Bt(R')-lK'x(t) = -Gx(t), (182)
where K'= diag[K, ... , Kj] is the composite matrix of solutions to the Riccati equations, Eq. (170),
with Qr and Rr dictated by Eqs. (178).

It remains to characterize the nature of this feedback control law which is suboptimal with respect
to the original cost functional, Eq. (177). The task of identifying the performance index or set of
indices for which a given feedback system is optimal is known as the inverse problem of linear optimal
control. 34 -35 Before applying the various techniques of the inverse problem to generate performance
indices for which the feedback system described by Eqs. (160) and (182) is optimal, it will be useful to
state several of the general results of the inverse problem.

Consider a general feedback system defined over the finite interval (to,tj) by the equations

x = A (t)x(t) + B (t) u (t), (183)

u (t) = -G (t)x(t) . (184)
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Theorem 3. Every system which can be represented in the form of Eqs. (183) and (184) is optimal with
respect to some performance functional in the form

J - xr"(t1)Fx(tl) + bf [xTQ(t)x + 2uTS(t)x + uTR (t)u] dt, (185)

where Q, R, and F are symmetric and R is positive definite. (The proof is trivial and may be found
in Ref. 34.)

From the standard linear-quadratic problem with a crossterm in the cost functional, G(t) in Eq. (184)
satisfies

G = R-'(S + BTK), (186)
K =-KA - ATK + (KB + ST)R -(S + BTK) - Q, K(t1) = F. (187)

It will be useful to observe that the Riccati equation, Eq. (187), may be expressed in terms of G as

K =-KA-AT K + GTRG-Q. (188)

Surprisingly, theorem 3 does not require that Q be positive semidefinite; hence the feedback con-
trol, Eq. (184), may be destabilizing and yet still be optimal with respect to Eq. (185). Clearly, for the
control of large space structures we desire the feedback control, Eq. (182), to be stabilizing; therefore,
it must be verified independently that the closed-loop system (A + BG) is stable.

The solution to the inverse problem is not in general unique, and several methods exist for gen-
erating matrices Q, R, S, and F which represent solutions. Here, we will present just two methods,
drawn from Refs. 36 and 34 respectively, which separately address the infinite-time and finite-time
problems.

Method A. For the specific problem (totI) = (0, o) with A, B, and G invariant and (A + BG) asymp-
totically stable, a solution in the form of Eq. (185) to the inverse problem described by Eqs. (183)
and (184) may be obtained as follows:

1. Choose a symmetric positive-definite matrix R arbitrarily.

2. Choose a symmetric matrix K arbitrarily.

3. Derive S using Eq. (186): 5 = RG - BTK.

4. Derive Qfrom the algebraic form of Eq. (188): Q = -KA - ATK + GTRG.

For the more general time-varying finite-terminal-time problem, the following method is sufficient to
generate a solution.

Method B

1. Let Go be any matrix, equivalent in dimension to G, such that, for all t E [totI, (a) GOB has
m linearly independent real eigenvectors and nonpositive eigenvalues, and (b) rank GOB = rank Go
= rank B. (Choosing Go = BTP for any real symmetric P < 0 will satisfy (a) and (b).)

2. Any pair of symmetric positive-definite matrices R and K which satisfy Go = -R-IBTK will
lead to a solution of the inverse problem. (Choosing R = I, in particular, will yield K = -P.)

3. Qmay then be obtained from K = -KA -ATK + GTRG - Qand Ffrom F= K(t1).

4. Finally, from Eq. (186), S is given by S = R (G + Go).

46



NRL REPORT 8675

Using either method A or method B, we may now return to the problem at hand and construct,
for any stabilizing feedback control law in the form of Eq. (182), a performance index in the form of
Eq. (186) for which the control is optimal. In each of the infinite-time and finite-time cases, one
specific choice of matrices yields a particularly simple representation of the resulting matrices. Denot-
ing by overbars this specific solution, we may proceed as follows.

Following method A, we select R, the control weighting matrix for our new cost functional, Eq.
(185), as

R = BTR'B. (189)

Recalling Eq. (179), we note that this is the same control penalty that appears in the original cost func-
tional. We next choose

K=K'. (190)

Substituting Eqs. (182) and (189) into the expression in step 3, we obtain the crossterm

S = (BTR'B)Bt(R')-lK'- BTK'. (191)

We may simplify this expression by first noting that the special structure of R' and B leads to the iden-
tities

BTR'=- BT(R')-l = Br. (192)

Using Eq. (192), and expanding the pseudo-inverse according to Eq. (181), we obtain

S= BTB(BTB)-iBT(R)-lKf- BTK'= BTKI- BTK,= 0. (193)

Finally, we generate our new state penalty Q according to step 4:

Q -K'A -A TK' + K'(R ')-IBtTBT(R')-K', (194)

where again we have used the identities in Eq. (192). Recalling that our original state penalty Q'
satisfies

Q' K'A -A TK' + K'(R')-1 K', (195)

we may write

Q = Q' + K'(R')-l (BtTBT- I)K'. (196)

The feedback control law, Eq. (182), is therefore optimal with respect to a modified cost func-
tional in which only the state weighting matrix has changed. In addition, we note that this particular
solution to the inverse problem (defined by Eqs. (189), (193), and (196)) reduces to the original prob-
lem if (B')-l exists.

A similar result may be obtained using method B for the time-varying, finite-terminal-time prob-
lem. In step 1, we choose

Go= -BtK'(t), (197)

where K'(t) is the block-diagonal positive-definite solution to the differential Riccati equation of the
original problem. It is simple to show that conditions (a) and (b) in step 1 are satisfied by Eq. (197).
One possible solution to Go = -(R)-BTK is then

R= BTB, (198)

K= K'. (199)
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Paralleling the procedure used in the infinite-time problem, we obtain the new state penalty Q in terms
of the original penalty Q':

Q = V' + K'(R')-I (BtTBT- I)K'. (200)
This equation is identical in form to Eq. (196), although Q is now a function of time. Further, we have
F = K'(T) = 0 and, from step 4,

S = k(G + Go) = 0, (201)

where we have used the identities of Eq. (192) one final time.

In general then, we may state that one performance index for which the feedback control, Eq.
(182), is optimal is

JIMSC = 0 (XTQX + WTR W) dt, (202)

with Q being defined by Eq. (200).

Remark 6. Reflecting on the form of Eq. (202), we recognize that the u given by Eq. (182) is that con-
trol among all possible realizable controls which minimizes a modified cost functional in which only
the state penalty has changed. As in the original IMSC formulation, the control penalty term is
entirely prespecified, and the structure of the state penalty is restricted. Thus, the limited design
freedom available in the original formulation remains, since the diagonal blocks of Q' are still
assignable by the designer. There is a loss of transparency in the design, however, since now the
influence of the assignable elements of Q' on the state performance is not straightforward.

Remark 7. The method proposed here using ii allows one to compute optimal control laws (relative to
JIMsc) for systems of arbitrarily large dimension, thus allowing all the modal information one has
about the system to be considered. Further, no specific requirement is placed on the number of
actuators, although we must require that the feedback gain G stabilize the system. There is no need
for truncation in the control-law design, since the computation of the Riccati-equation solution from
the analytical expressions, Eqs. (173), (174), and (175), and the computation of the control i, Eq.
(180), requiring the inverse of an m-by-m matrix, can both be performed for extremely large sys-
tems. The limiting computation is the conversion of Eq. (150) to the form of Eq. (151) to deter-
mine the mode shapes and frequencies.

Remark 8. It follows directly that control spillover can be eliminated by use of the new extended IMSC
approach. Observation spillover will still be present, but the total absence of control spillover
guarantees stability of the closed-loop system for the given large-order model. The limiting factor
here is the fidelity of one's knowledge of higher order modes.

Remark 9. The design of optimal controllers using standard linear-quadratic theory is actually iterative.
The designer chooses Q and R matrices, performs simulations to study the resulting performance,
and iteratively adjusts the entries in R to prevent saturation of the actuators and the entries in Q to
obtain the desired performance. The advantages achieved in genera! by IMSC are made at the
expense of freezing the choice of the control weighting matrix. One no longer has weighting factors
with direct one-to-one correspondence to the input magnitudes ii, which for conventional design are
adjusted to avoid individual actuator saturation. Only the entries in the Q matrix are at the
designer's disposal, and these are properly intended for other purposes and do not have a direct rela-
tion to any given actuator.

In the next subsection, methods for actuator-location optimization are developed which balance
the system to cause the expectations of the commands to each actuator to be of similar magnitude.
This can partially offset the lack of adjustment capability in the control penalty matrix.
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Remark 10. The advantages of this new formulation of IMSC as described in remarks 7 and 8 are made
at the expense of loss of design transparency, as described in remark 6. However, considering the
advantages inherent in lifting the stringent requirement on the number of actuators, a designer
should be willing to pursue this new approach, provided the resulting closed-loop system is stable.
One sufficient condition for stability of the closed-loop system is that Q be positive definite.

6.4 Actuator Placement for IMSC

Baruh and Meirovitch 18 state that an advantage of IMSC is that the actuator locations are imma-
terial, provided B' is not singular. The statement is valid in the sense that, as noted in remark 3, rather
than solving for optimal control inputs, IMSC poses a problem which optimizes the generalized forces
for each mode without regard for how these forces might be produced by the actuators. However, the
determination of the actuator commands depends fundamentally on the actuator locations.

Remark 11. The consequences of improperly chosen actuator locations can be disastrous. It is not
difficult to generate examples which demonstrate that the force or torque required of a given actua-
tor can grow without bound as the actuator location approaches a position for which the system is
uncontrollable.

We now develop methods for optimizing the actuator. locations in order to minimize the actual
control effort. First, a computationally simple open-loop approach is presented, and then by similar rea-
soning a more precise closed-loop approach is developed. Finally, a method is given which in addition
minimizes residual mode excitation.

Open-Loop Approach to Actuator Placement

The objective in selecting the locations for the actuators is to minimize the control effort VuT-.

We define the singular-value decomposition of Bt to be US VT with singular values
or1(Bt) > 0, . m(Bt) > 0, assuming that there are no redundant actuators. From Eq. (180)

u Tu = WT(B t) T(B t) W

- (WTV) diag[ro (Bt), ... 2, o(Bt)] (VTW). (203)

The matrix V is a unitary transformation which does not change the length of the vector W. If we
assume no knowledge of the vectors Wthat will appear in operation, so that all values of Ware equally
likely, then the control effort is minimized when the actuator locations pj are chosen to make the larg-
est o.i(Bt) as small as possible, or equivalently

max[min -i (B)] . (204)
pi i

At this point, if a discrete set of possible actuator locations exists, the set chosen is simply the
one which yields the largest minimum singular value. Alternatively, if a gradient search is to be per-
formed over the space of possible actuator locations, the gradient of cr1 with respect to pj may be
developed as

__= .IT O(B ) (B ) ij e d

=T IBtT Bt+ BtT a d (205)
&pj Bpj

where e, and 71j are the columns of V and U respectively and Eq. (204) is evaluated for i associated
with the minimum singular value.
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Closed-Loop Approach to Actuator Placement

Since f is to be generated as a feedback control, we can obtain information about its magnitude
for an ensemble of initial conditions and use this information to improve the preceding technique. We
consider the initial conditions to be unknown and assume them to be zero mean and Gaussian with
covariance PO = E (XoxT). Then the actuators are to be placed to minimize the maximum eigenvalue
of a control-effort matrix, which for finite-time problems takes the form

,.T

=E fo U UT dt. (206)

For infinite-time problems, the control effort matrix would be the limit of Eq. (206) as T-°o.

With R' and K' defined as in subsection 6.3, the optimally controlled system, Eq. (154), may be
expressed as

x= [A - (R')-'K']x = Ax, (207)

with the solution

x(t) = D(t)xo. (208)

Recalling that -i may be expressed as

u = BtW= -Bt(R')-YK'x, (209)
we can write the criterions as

A= Btf (R t)-l [ fo K'DPo(DTK' dt] (R ')-')B tT (210)

= Bt2B tT, (211)

Because of the decoupling of the optimal-control calculation from the actuator locations pj, the optimal
trajectory x and the Riccati-equation solution K' are independent of pj, making the matrix M defined in
Eq. (211) independent of pj. This vastly simplifies the computations required for optimizing the eigen-
values of J and makes the approach used here quite reasonable in terms of computational effort. The
objective is to obtain

min [max AiW (Bt "A)] (212)
pi 

which can be accomplished as before by using gradient expressions for the eigenvalue derivatives.

In the infinite-time case, T -° , the K' matrix becomes time invariant. Letting
P(t) = (DI(t)po4DT(t), one can generate 6 from

9= (R')-1K'(jf P(t) dt)K'(R')-', (213)
where P(t) satisfies

dP(t)/dt = AP + PA. (214)

Actuator Placementfor Spillover Suppression

In the previous literature on IMSC, the number of modes to be controlled could not exceed the
number of actuators, and control spillover questions were potentially quite serious. Reference 18, hav-
ing adopted the attitude that actuator placement is immaterial for generating the control signals as long
as the system is controllable, suggests placing the actuators at nodes of the first residual mode. Actu-
ally it is more reasonable to try to suppress the control spillover into a set of residual modes by place-
ment of the actuators, but this placement would be at the expense of minimizing the control effort
required to control the controlled modes. Hence a compromise would be called for. As in section 5,
we let
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xc,= A, x, + B (215)

represent the set of residual modes not included in the control-system model. Then we wish to keep
Br i = B BtW small. In the open-loop approach, we would seek to adjust the actuator locations pj to
obtain

max[min ori(B) - almax 0_k(BrBt)], (216)
pj I k

where a, is an adjustable parameter. In the closed-loop case we wish to keep

E f BriuTBT dt (217)

-small, which leads to the actuator-placement criterion

min[max Xi(Bt.DBt 7 ) + a2max Xi(BrBtYDBtTBf). (218)
Pj I i

The added complication of using such a criterion over that of Eq. (212) is negligible. However,
the results of the previous subsection eliminated the fundamental shortcoming of IMSC of requiring
one actuator for each mode to be controlled, and, as noted in remark 8, this allows us to eliminate the
control spillover problem entirely for all known modes. Thus, there is then no need for considering
spillover suppression in the choice of actuator locations.

6.5 Summary

A new formulation of the IMSC method has been developed which allows one to pick the number
of actuators to use. The analytical solution for the optimal control law is extended to handle modal
damping and rigid-body modes. These two results allow one to solve the optimal-control problem for
extremely high dimensional systems. The price one pays is that the cost functional no longer contains
the usual adjustable parameters which have a one-to-one correspondence to each controller's action and
that the state penalty only indirectly dictates the state performance; hence it is more difficult to tune the
cost functional to meet the desired performance. Methods of locating the actuators to minimize the
control effort are developed, and the methods are found to be comparatively simple because of the
decoupling inherent in IMSC which can separate the control-law determination from the actuator-
placement problem.

7. CONCLUSIONS

The problem of actuator placement for the control of distributed-parameter systems has been con-
sidered in detail, motivated by the general problem of control of large space structures. Significant
advances have been made in understanding the utility of the concept of degree of controllability as a
criterion for actuator placement. This has been achieved through application to several relatively sim-
ple, yet significant, numerical problems. A new method for approximating the degree of controllability
has been formulated via discretization of the continuous-time system, providing a conservative (lower-
bound) approximation to the exact value. The concept of a degree of control spillover has been intro-
duced to address the acknowledged limitation in the fidelity of finite-dimensional models of
distributed-parameter systems. Finally, the problem of number and placement of actuators has been
considered in conjunction with a specific nonstandard formulation of linear-quadratic optimal control
known as Independent Modal Space Control. A reformulation of the technique, which lifts the restric-
tion on the number of actuators required, along with the development of methods for actuator-
placement optimization, adds significantly to the practical utility of the IMSC design technique.

The results of this research suggest several new areas of investigation, with two areas being possi-
bly most significant. The first area involves the difficulties encountered in determining globally optimal
solutions for actuator placement on a simple flexible structure, as detailed in section 4. These
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difficulties suggest that the standard gradient-based search techniques, as employed here, are inappropri-
ate for general large-dimensional, multiple-input control problems associated with systems such as large
flexible spacecraft. The general problem is characterized by a large number of local optima, often with
values near the global optimum, by "steep" gradients, and numerical problems associated with the gra-
dient evaluation, and in some cases by the existence of a discrete solution space in the true physical
problem. These characteristics occur also in such diverse engineering problems as structural optimiza-
tion, optimal kinematic synthesis, and optimal allocation of computer resources. In these fields, the use
of search strategies based on evolutionary or genetic algorithms and the use of methods of combina-
torial heuristics have begun to be applied with some success. The practical application of the actuator-
placement criteria discussed herein, to significant engineering design problems, will likely require the
implementation of such sophisticated optimization methods.

The second area of investigation which may yield significant results involves extensions of the
contributions of section 6 to the IMSC design technique. Although the developments of that section
are limited to linear-quadratic optimal control, IMSC itself is not so limited. The newly developed
actuator-placement techniques presented here are clearly applicable to other IMSC-based design
approaches (particularly pole placement). The application of the new method for lifting the restriction
on the number of actuators to other IMSC design strategies, however, is not straightforward and
requires careful consideration. The problem that arises in pole placement is that the optimal gains
which achieve the desired pole allocation can be only approximately synthesized when the number of
actuators is reduced, and the stability of the resulting closed-loop system in the general case has not
been assessed. Finally this new formulation of IMSC should be applied to a significant control design
problem to determine guidelines with which the practical design engineer may use the technique suc-
cessfully.

8. REFERENCES

1. R.E. Kalman, "On the General Theory of Control Systems," pp. 481-492 in Proceedings of the First

International Congress on Automatic Control, Moscow, 1960, Vol. 1.

2. R.E. Kalman, Y.C. Ho, and K.S. Narendra, "Controllability of Linear Dynamical Systems," Contri-
butions to Differential Equations 1 (No. 2), 182-213 (1961).

3. R.G. Brown, "Not Just Observable, But How Observable," pp. 709-714 in Proceedings of the 1966
National Electronics Conference, Vol. 22.

4. R.A. Monzingo, "A Note on Sensitivity of System Observability," IEEE Trans. Automatic Control
AC-12, 314-315 (June 1967).

5. C.D. Johnson, "Optimization of a Certain Quality of Complete Controllability and Observability
for Linear Dynamical Systems," ASME Trans. J. Basic Engng. D 91, 228-238 (1969).

6. P.C. Miller and H.I. Weber, "Analysis and Optimization of Certain Qualities of Controllability and
Observability for Linear Dynamical Systems," Automatica 8, 237-246 (1972).

7. B. Friedland, "Controllability Index Based on Conditioning Number," ASME Trans. J. Dynamic
Systems, Measurement, and Control 97, 444-445 (Dec. 1975).

8. C.N. Viswanathan, R.W. Longman, and P.W. Likins, "A Definition of the Degree of
Controllability-A Criterion for Actuator Placement," pp. 369-384 in Proceedings of the 2nd
VPI&SU/AIAA Symposium on Dynamics and Control of Large Flexible Spacecraft, June 1979.

52



NRL REPORT 8675

9. C.N. Viswanathan, "Aspects of Control of Large Flexible Spacecraft," doctoral dissertation,
Columbia University, 1980.

10. C.N. Viswanathan and R.W. Longman, "The Determination of the Degree of Controllability for
Dynamic Systems with Repeated Eigenvalues," in Proceedings of the NCKU/AAS Symposium on
Engineering Science and Mechanics, Tainan, Taiwan, Dec. 1981.

11. R.W. Longman and K.T. Alfriend, "Actuator Placement from Degree of Controllability Criteria
for Regular Slewing of Flexible Spacecraft," Acta Astronautica 8 (No. 7), 703-718 (1981).

12. M. Athans and P.L. Falb, Optimal Control, McGraw-Hill, 1966.

13. J.-N. Juang and G. Rodriguez, "Formulations and Applications of Large Structure Actuator and
Sensor Placements," pp. 247-262 in Proceedings of the 2nd VPI&SU/AIAA Symposium on Dynamics
and Control of Large Flexible Spacecraft, June 1979.

14. S.E. Aidarous, M.R. Gevers, and M.J. Install6, "Optimal Point-wise Discrete Control and Con-
trollers' Allocation Strategies for Stochastic Distributed Systems," Int. J. Control 24, 493-508
(1976).

15. J.C.E. Martin, "Optimal Allocation of Actuators for Distributed-Parameter Systems," ASME
Trans. J. Dynamic Systems, Measurement, and Control 100, 227-228 (Sept. 1978).

16. P.C. Hughes and R.E. Skelton, "Controllability and Observability for Flexible Spacecraft," pp.
385-408 in Proceedings of the 2nd VPI&SU/AIAA Symposium on Dynamics and Control of Large Flex-
ible Spacecraft, June 1979.

17. B.P. Wang and W.D. Pilkey, "Optimal Damper Location in the Vibration Control of Large Space
Structures," pp. 379-392 in Proceedings of the 3rd VPI&SU/AIAA Symposium on Dynamics and Con-
trol of Large Flexible Spacecraft, June 1981.

18. H. Baruh and L. Meirovitch, "On the Placement of Actuators in the Control of Distributed Param-
eter Systems," presented as AIAA paper 81-0638 at the 22nd Structures, Structural Dynamics and
Materials Conference, April 6-8, 1981.

19. R.E. Skelton and D. Chiu, "Optimal Selection of Inputs and Outputs in Linear Stochastic Sys-
tems," in Proceedings of the NCKU/AAS Symposium on Engineering Science and Mechanics, Tainan,
Taiwan, Dec. 1981.

20. G.J. Kissel and J.G. Lin, "Spillover Prevention via Proper Synthesis/Placement of Actuators and
Sensors," pp. 1213-1218 in Proceedings of the 1982 American Control Conference, Vol. 3.

21. G. Schulz and G. Heimbold, "Integrated Actuator/Sensor Positioning and Feedback Design for
Large Flexible Structures," pp. 476-483 in Proceedings of the AIAA Guidance and Control Confer-
ence, Aug. 1982.

22. R.A. Laskin, R.W. Longman, and P.W. Likins, "A Definition of the Degree of Controllability for
Fuel Optimal Systems," pp. 1-14 in Proceedings of the 3rd VPI&SU/AIAA Symposium on Dynamics
and Control of Large Flexible Spacecraft, June 1981.

23. R.W. Longman and K.T. Alfriend, "Energy Optimal Degree of Controllability and Observability
for Regulator and Maneuver Problems," in Proceedings of the 16th Annual Conference on Informa-
tion Sciences and Systems, Princeton, N.J., Mar. 1982.

53



ROBERT E. LINDBERG, JR.

24. B.C. Moore, "Principal Component Analysis in Linear Systems: Controllability, Observability and
Model Reduction," IEEE Trans. Automatic Control AC-26 (No. 1), 17-32 (Feb. 1981).

25. A. Arbel and N.K. Gupta, "Optimal Actuator and Sensor Locations in Oscillatory Systems,"
presented at The 13th Asilomar Conference on Circuits, Systems, and Computers, Nov. 1979.

26. A. Arbel, "Controllability Measures and Actuator Placement in Oscillatory Systems," Int. J. Con-
trol 33 (No. 3) 565-574 (1981).

27. W.E. Vander Velde and C.R. Carignan, "Number and Placement of Control System Actuators
Considering Possible Failures," pp. 7-15 in Proceedings of the 1982 American Control Conference,
Vol. 1.

28. L. Meirovitch, Analytical Methods in Vibrations, MacMillan, 1967.

29. R.A. Laskin, "Aspects of the Dynamics and Controllability of Large Flexible Structures," doctoral
dissertation, Columbia University, 1982.

30. M.J. Balas, "Feedback Control of Flexible Systems," IEEE Trans. Automatic Control AC-23, 673-
679 (1978).

31. L. Meirovitch, H.F. VanLandingham, and H. Oz, "Distributed Control of Flexible Spinning Space-
craft," J. Guidance and Control 2 (No. 5), 407-415 (1979).

32. H. Oz and L. Meirovitch, "Optimal Modal Space Control of Flexible Gyroscopic Systems," J. Gui-
dance and Control 3 (No. 3) 218-226 (1980).

33. L. Meirovitch, H. Baruh, and H. Oz, "A Comparison of Control Techniques for Large Flexible
Systems," presented as AAS paper 81-195 at the 1981 AAS/AIAA Astrodynamics Specialist
Conference, Aug. 3-5, 1981.

34. E. Kreindler and A. Jameson, "Optimality of Linear Control Systems," IEEE Trans. Automatic
Control AC-17, 349-351 (1972).

35. A. Jameson and E. Kreindler, "Inverse Problem of Linear Optimal Control," SIAM J. Control 11
(No. 1), 1-19 (1973).

36. J. Casti, "The Linear Quadratic Control Problem: Some Results and Outstanding Problems,"
SIAM Review 22 (No. 4) 459-485 (1980).

54


